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Magnus expansion
SPDE

Numerics

Goal

Today, we are developing an efficient numerical method to solve the following SPDE.

(
−∂tut(x , v) + h(x , v)ut(x , v) + f x (x , v)∂xut(x , v) + f v (x , v)∂v ut(x , v)

+ 1
2gxx (x , v)∂xxut(x , v) + gxv (x , v)∂xv ut(x , v) + 1

2gvv (x , v)∂vv ut(x , v)
)

dt

+ (σx (x , v)∂xut(x , v) + σv (x , v)∂v ut(x , v)) dWt = 0,

u0(x , v) = φ(x , v),

(SPDE)

where the coefficient functions are chosen such that there exists a unique strong solution.
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Goal

We will see that after discretizing (SPDE) in space and vectorizing the equation we can find
matrices A, B ∈ Rd2,d2 such that

dUt = BUtdt + AUtdWt , U0 = vec (Φ) ∈ Rd2,1, (SDE)

which can be solved by first computing the Magnus expansion for

dXt = BXtdt + AXtdWt , X0 = Id2

and multiplying it with the discretized and vectorized initial datum, i.e.

Ut = XtU0.

Undoing the vectorization of Ut yields a numerical approximation of (SPDE).
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Idea

Solve the matrix-valued SDE

dXt = BXtdt + AXtdWt , X0 = Id

by assuming that there exists a solution Xt = exp (Yt) for small times t > 0 depending on a
stopping time and

Yt =
∫ t

0
µ (Ys) ds +

∫ t

0
σ (Ys) dWs , Y0 = 0Rd×d .
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Determine µ and σ

dXt = BXt + AXtdWt

= B exp (Yt) + A exp (Yt) dWt
= d exp (Yt)

=
(
LYt (µ (Ys)) + 1

2QYt (σ (Yt) , σ (Yt))
)

exp (Yt) dt

+ LYt (σ (Yt)) exp (Yt) dWt .

← Equation

← Assumption
← Assumption
← Itô’s formula

A comparison of coefficients yields

B != LYt (µ (Yt)) + 1
2QYt (σ (Yt) , σ (t, Yt))

A != LYt (σ (Yt)) .
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Determine µ and σ

Inverting LY by using Baker’s lemma yields

σ (Yt) ≡
∞∑

n=0

βn
n! adn

Yt (A) (1.1)

µ (Yt) ≡
∞∑

k=0

βk
k! adk

Yt

(
B − 1

2

∞∑
n=0

∞∑
m=0

adn
Yt (σ (Yt))
(n + 1)!

adm
Yt (σ (Yt))
(m + 1)!

+
[
adn

Yt (σ (Yt)) , adm
Yt (σ (Yt))

]
(n + m + 2)(n + 1)!m!

) (1.2)

where βn denote the Bernoulli numbers, e.g. β0 = 1, β1 = −1
2 , β2 = 1

6 , β3 = 0 and β4 = − 1
30 .
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Solve the SDE by Picard-iteration

Now, we solve the SDE for Yt by Picard-iteration

Y n
t =

∫ t

0
µ
(
Y n−1

s

)
ds +

∫ t

0
σ
(
Y n−1

s

)
dWs . (1.3)

In order to derive the Magnus expansion formulas, we will introduce some bookkeeping
parameters ε, δ > 0 and substitute A by εA, as well as B by δB. Henceforth, we will denote
the n-th order Picard iteration with the substitution by Y n,ε,δ

t .
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Order 1
Notice that the zero matrix commutes with all matrices and therefore by definition of
ad0

Y (A) = A we have

σ
(
Y 0,ε,δ

t
)

= εA.

Inserting this into the formula for µ yields

µ
(
Y 0,ε,δ

t
)

= δB − 1
2ε2A2,

because A commutes with itself as well.
Since the Itô-correction term is of order ε2, it will not be part of the first-order Magnus
expansion and we have

Y 1
t =

∫ t

0
Bds +

∫ t

0
AdWs = Bt + AWt .
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Order 2

Let us focus on the term for σ

σ
(
Y 1,ε,δ

t
)

=

1
0!ad0

Y 1,ε,δ
t

(εA)− 1
2ad1

Y 1,ε,δ
t

(εA) +O(ε3, . . . , δ3)

≈ εA− 1
2
[
Y 1,ε,δ

t , εA
]

= εA− 1
2 [δB, εA] t − 1

2 [εA, εA] Wt

= εA− 1
2 [δB, εA] t.

← Definition of σ

← Definition of ad

← Definition of Y 1,ε,δ
t

← [A, A] = 0
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Order 2

The term for µ can be treated the same way. We have

µ
(
Y 1,ε,δ

t
)

= δB − 1
2 [εA, δB] Wt −

1
2ε2A2 +O(ε3, . . . , δ3).

In total, we get

Y 2
t =

∫ t

0
B − 1

2 [A, B] Ws −
1
2A2ds +

∫ t

0
A− 1

2 [B, A] sdWs .

Now, we want to replace the stochastic integral by a Lebesgue integral to reduce the
computational effort for the implementation and avoid iterated stochastic integrals.
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Order 2

We observe the following relationship by Itô’s integration by parts formula

d (sWs) = sdWs + Wsds + 0

⇔
∫ t

0
sdWs = tWt −

∫ t

0
Wsds

Applying this formula yields

Y 2
t = Bt − 1

2A2t + 1
2 [B, A]

∫ t

0
Wsds + AWt −

1
2 [B, A]

(
tWt −

∫ t

0
Wsds

)
= Y 1

t −
1
2A2t + [B, A]

∫ t

0
Wsds − 1

2 [B, A] tWt .
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Order 3, 4

Y 3
t = Y 2

t + [[B, A] , A]
(1

2

∫ t

0
W 2

s ds − 1
2Wt

∫ t

0
Wsds + 1

12 tW 2
t

)
+ [[B, A] , B]

(∫ t

0
sWsds − 1

2 t
∫ t

0
Wsds − 1

12 t2Wt

)
.

Y 4
t = Y 3

t + [[[B, A] , A] , A]

(
1
12W 2

t

∫ t

0
Wsds − 1

4Wt

∫ t

0
W 2

s ds + 1
6

∫ t

0
W 3

s ds

)

+ [[[B, A] , B] , A]

(
−1

2Wt

∫ t

0
sWsds + 1

2

∫ t

0
sW 2

s ds + 1
6 tWt

∫ t

0
Wsds + 1

24 t2W 2
t − 1

4 t
∫ t

0
W 2

s ds

)

+ [[[B, A] , B] , B]

(
−1

2 t
∫ t

0
sWsds + 1

2

∫ t

0
s2Wsds + 1

12 t2
∫ t

0
Wsds

)

+
[
[B, A] , A2]( 1

24 t2Wt − 1
2

∫ t

0
sWsds + 1

4 t
∫ t

0
Wsds

)
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Recap

We want to discretize the following SPDE in space only to apply the Magnus expansion

(
−∂tut(x , v) + h(x , v)ut(x , v) + f x (x , v)∂xut(x , v) + f v (x , v)∂v ut(x , v)

+ 1
2gxx (x , v)∂xxut(x , v) + gxv (x , v)∂xv ut(x , v) + 1

2gvv (x , v)∂vv ut(x , v)
)

dt

+ (σx (x , v)∂xut(x , v) + σv (x , v)∂v ut(x , v)) dWt = 0,

u0(x , v) = φ(x , v),
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Finite Differences

Let Xnx
ax ,bx

be the grid for the position of a particle with nx + 2 points on the subset
[ax , bx ] ⊂ R and Vnv

av ,bv
be the grid of its velocity with nv + 2 points on the subset [av , bv ] ⊂ R

Xnx
ax ,bx

:= {xnx
i ∈ [av , bv ] : xnv

i = ax + i∆x , i = 0, . . . , nv + 1} , ∆x := bx − ax
nx + 1 ,

Vnv
av ,bv

:=
{

vnv
j ∈ [av , bv ] : vnv

j = av + j∆v , j = 0, . . . , nv + 1
}

, ∆v := bv − av
nv + 1 ,

For simplicity we set d = nx = nv , [ax , bx ] = [av , bv ] = [−4, 4] during our experiments later
on.
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Finite Differences

We will impose zero-boundary conditions and therefore define the central finite-difference
matrices

Dx := 1
2∆x tridiagnx ,nx (−1, 0, 1) , Dv := 1

2∆v tridiagnv ,nv (−1, 0, 1) ,

Dxx := 1
(∆x)2 tridiagnx ,nx (1,−2, 1) , Dvv := 1

(∆v)2 tridiagnv ,nv (1,−2, 1) .

Zw := (zw (xi , vj))i=1,...,nx
j=1,...,nv

, Σw := (σw (xi , vj))i=1,...,nx
j=1,...,nv

, unx ,nv
t := (ut(xi , vj))i=1,...,nx

j=1,...,nv

for Z = F , G , H, z = f , g , h, respectively, and w ∈ {x , v , xx , xv , vv}.
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Finite Differences

f x (xi , vj)∂xut(xi , vj) ≈ f x (xi , vj)
ut(xi+1, vj)− ut(xi−1, vj)

2∆x

for all i = 1, . . . , nx and j = 1, . . . , nv .
In our notations a derivative in x is a multiplication of the corresponding finite-difference
matrix from the left to unx ,nv

t , i.e.(ut(xi+1, vj)− ut(xi−1, vj)
2∆x

)
i=1,...,nx
j=1,...,nv

= Dxunx ,nv
t .

A derivative in v on the other hand is a multiplication from the right with the transposed
matrix. To get them both on the left hand side we need to vectorize the equation.
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Kronecker product

Using the Kronecker product, it is well-known for compatible matrices D1UD2 = C that

vec (C) = vec (D1UD2) =
(
DT

2 ⊗ D1
)

vec (U)

Now, applying this to our case yields

vec
(
Dxunx ,nv

t
)

= vec
(
Dxunx ,nv

t Inv

)
= (Inv ⊗ Dx ) Unx nv

t .
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Hadamard product

Using the Hadamard or element-wise product, it is well-known that

vec (F ⊙ U) = vec (F )⊙ vec (U) = diag (vec (F )) · vec (U)

Now, applying this to our case yields

vec
(
F x ⊙

(
Dx · unx ,nv

t
))

= diag (vec (F x )) · vec
(
Dx · unx ,nv

t
)

.

In total, we have

[f x (xi , vj)∂xut(xi , vj)]i=1,...,nx
j=1,...,nv

= diag (vec (F x )) · (Inv ⊗ Dx ) · Unx nv
t .
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Vectorization

Applying this logic to all other summands in the (SPDE) yields

B := diag (vec (H))
+ diag (vec (F x )) · (Inv ⊗ Dx )
+ diag (vec (F v )) · (Dv ⊗ Inx )

+ 1
2diag (vec (Gxx )) · (Inv ⊗ Dxx )

+ diag (vec (Gxv )) · (Dv ⊗ Dx )

+ 1
2diag (vec (Gvv )) · (Dvv ⊗ Inx )

A := diag (vec (Σx )) · (Inv ⊗ Dx )
+ diag (vec (Σv )) · (Dv ⊗ Inx ) .
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Stochastic Langevin equation

h ≡ f v ≡ gxx ≡ gxv ≡ σx ≡ 0, fx (x , v) := −v , gvv ≡ a, σv ≡ σ. (2.4)

In this special case, there exists an explicit fundamental solution Γ for 0 < σ ≤
√

a (cf.
Pascucci and Pesce (2022):p. 4 Proposition 1.1.), which is given by

Γ (t, z ; 0, ζ) := Γ0 (t, z −mt(ζ)) ,

Γ0 (t, [x , v ]) :=
√

3
πt2(a − σ2) exp

(
− 2

a − σ2

(
v2

t −
3vx
t2 + 3x2

t3

))

where ζ := (ξ, η) is the initial point and

mt(ζ) :=
(

ξ + tη − σ
∫ t

0 Wsds
η − σWt

)
.
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Stochastic Langevin equation

Having the fundamental solution, we can solve the Cauchy-problem by integrating against the
initial datum, i.e.

ut(x , v) =
∫
R2

Γ(t, [x , v ]; 0, [ξ, η])φ(ξ, η)dξdη.

To get an explicit solution for the double integral, we will choose φ to be Gaussian, i.e.

φ (ξ, η) := exp
(
−
(
ξ2 + η2)

2

)
.
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Implementation

1 We apply the Magnus expansion
iteratively on small subintervals to avoid
blow-ups.

2 To compute the matrix exponential, we
use a special matrix-vector exponential
expmvtay2a: Without full matrix
exponential, uses sparsity, works on GPU

asee Ibáñez et al. (2022)
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Sparsity is our friend

1 Number of non-zero diagonals of A: 2
2 Number of non-zero diagonals of B: 5
3 Number of non-zero diagonals of [B, A]: 5
4 Number of non-zero diagonals of [[B, A] , A]: 8
5 Number of non-zero diagonals of [[B, A] , B]: 10
6 This will allow us to use cuSPARSE

library efficiently for both the Magnus logarithm as well
as the matrix-vector exponential.

Central 10000 x 10000 points of entire matrix
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Error definition

We consider the mean error in all grid points

AEd ,κ
t := 1

M

M∑
m=1

∣∣∣U ref,d ,κ
t,m − Uapprox,d ,κ

t,m

∣∣∣ ∈ R
d

2κ , d
2κ .

For our comparison later on we will take the average
over the region κ = 4, i.e. [−0.25, 0.25]× [−0.25, 0.25]
to avoid issues due to the zero boundary condition.

Ud ,κ
t

d
2κ = Ud

t

d
2κ
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Absolute Errors

In the case d = 300 and ∆ = 2.5e − 2 on [−4, 4] × [−4, 4]
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Computational times vs Error level

Error level: (1:0e! 03; 1:0e! 02]
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Computational times vs Error level
Error level: (1:0e! 04; 1:0e! 03]
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Computational times vs Error level

Error level: (1:0e! 05; 1:0e! 04]
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Natural step-size control

The iterated Magnus scheme has the possibility for a natural time step-size control.

|order 2− order 3| ≤ tol ⇒ Step-size small enough

Computational effort:
1 Magnus logarithm of order 2 can be re-used for order 3
2 two matrix-vector exponentials per step-size reduction for each trajectory

Maybe select random smaller batch-size to determine step-size
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Conclusion

We have seen how to derive the Itô-stochastic Magnus expansion for SDEs with constant
matrices and used it to solve two-dimensional SPDEs with a given initial datum numerically.
The scheme has an excellent accuracy and its advantage in terms of computational effort
excels for higher spatial resolution, e.g. to have the same accuracy for d = 400 we need an
Euler scheme with ∆ = 1e − 5 taking 35.8 hours, while Magnus order 3 takes only 462
seconds using ∆ = 1e − 2 with M = 100 trajectories.
This is a speed-up by a factor 280 just using one GPU while sparsity ensures an almost equal
memory demand.
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Thank you for your attention!

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under the Marie Sklodowska-Curie grant agreement No 813261 and is part of the ABC-EU-XVA
project.
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