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Goal

Today, we are developing an efficient numerical method to solve the following SPDE.

(—8tut(x, v) + h(x, v)ue(x, v) + FX(x, v)Oxue(x, v) + £/(x, v)Oyu(x, v)

1 1
+ 587 (%, V)Ouctie(x, v) + &7 (x, V)Ox e (x, v) + 58" (x, v)Duy e (x, V)) dt  (SPDE)

+ (% (x, v)Oxue(x, v) + 0" (x, v)0,u(x, v)) dW; = 0,
uo(x, v) = p(x, v),

where the coefficient functions are chosen such that there exists a unique strong solution.
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Goal

We will see that after discretizing (SPDE) in space and vectorizing the equation we can find

matrices A, B € R9*:4* such that
dU, = BU,dt + AU.dW;, Up = vec(®) € R¥1,
which can be solved by first computing the Magnus expansion for
dX; = BXedt + AXedWe,  Xo = e
and multiplying it with the discretized and vectorized initial datum, i.e.

Ut = Xt Uo.

Undoing the vectorization of U; yields a numerical approximation of (SPDE).

Kevin Kamm Magnus expansion for 2D SPDE
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Magnus expansion o A
8 P Heuristical derivation

Expansion formulas

Idea

Solve the matrix-valued SDE
dXy = BXedt + AXedWs,  Xo = Iy

by assuming that there exists a solution X; = exp (Y;) for small times t > 0 depending on a
stopping time and

t t
Yt:/ M(Ys)ds+/ o (Ys) dWa, Yo = Opaxa.
0 0]
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Magnus expansion - A
8 P Heuristical derivation

Expansion formulas

Determine i and o

dX: = BX: + AX:dW, + Equation
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Magnus expansion

Determine i and o

dXt = BXt G AXtth
= Bexp(Y:) + Aexp (Y:) dW;

Kevin Kamm
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Magnus expansion

Determine i and o

dXt = BXt G AXtth
= Bexp(Y:) + Aexp (Y:) dW;
= dexp(Yt)
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Magnus expansion - A
8 P Heuristical derivation

Expansion formulas

Determine i and o

dXt = BXt G AXtth
= Bexp(Y:) + Aexp (Y:) dW;
= dexp(Yt)

_ (cyt man %Qyt (0(V2) ,U(Yt))> exp (V2) dt
+ Ly, (0 (Y:)) exp (Ye) dW,.
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Magnus expansion

Determine i and o

dXt = BXt aF AXtth

= exp(Ye) + Aexp(Yy) dWe
= dexp(Yt)
+ exp (Yt) th

A comparison of coefficients yields

Heuristical derivation
Expansion formulas

< Equation
< Assumption
< Assumption

) exp (V4) dt < |td's formula

BL Ly, (1(Y0) + 59w (0 (¥4) 0 (£, ¥e))

A< Ly (0(Y:)).

Kevin Kamm
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Magnus expansion - A
8 P Heuristical derivation

Expansion formulas

Determine i and o

Inverting Ly by using Baker's lemma yields

Z fn s 0 (1.1)
=Y % (B— 222 ad Md(vr; (+ (lv)/'t» (12)
k= 0 =0 m=0 :

+[ Yt( (Yt)),ad’ﬁ(a(Yt))})

(n+m+2)(n+1)Im!

where (5, denote the Bernoulli numbers, e.g. 5o =1, p1 = —%, Bo = %, B3 =0 and 84 = —3—10.
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Magnus expansion - A
8 P Heuristical derivation
Expansion formulas

Solve the SDE by Picard-iteration

Now, we solve the SDE for Y; by Picard-iteration

Y”:/Otu(vsn—l) ds+/0ta(Ys”_1> dWw. (1.3)

In order to derive the Magnus expansion formulas, we will introduce some bookkeeping
parameters £,0 > 0 and substitute A by €A, as well as B by dB. Henceforth, we will denote
the n-th order Picard iteration with the substitution by Y.
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Magnus expansion - A
8 P Heuristical derivation

Expansion formulas

Order 1

Notice that the zero matrix commutes with all matrices and therefore by definition of
ad} (A) = A we have

o (Yto’e’g) = eA.
Inserting this into the formula for p yields
0,0\ __ _ E 2 22
p(v2e) =48 SRR

because A commutes with itself as well.
Since the Itd-correction term is of order 2, it will not be part of the first-order Magnus
expansion and we have

t t
s :/ Bds+/ AdW, = Bt + AW;.
(0] (0]
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Magnus expansion - A
8 P Heuristical derivation

Expansion formulas

Order 2

Let us focus on the term for o

1L

1e,6 1
o (yt e ) = 5ad)acs (A) = 5

=5 adi,lws (eA) + O(e3, ..., 8%)

Kevin Kamm Magnus expansion for 2D SPDE
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Magnus expansion - A
8 P Heuristical derivation

Expansion formulas

Order 2

Let us focus on the term for o

1e,6 1 1
o (Yt 2 ) = aadoytl,g,g (eA) — 5ad}1.c5 (A) + O, ..., 8°)

~eA— % V10 eA|
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< Definition of o
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Magnus expansion - A
8 P Heuristical derivation

Expansion formulas

Order 2

Let us focus on the term for o

1e,6 1 1
o (Yt 2 ) = aadoytl,g,g (eA) — 5ad}1.c5 (A) + O, ..., 8°)

~eA— % V10 eA|

1 1
=cA— 5 [68,5/4] = 5 [EA,EA] Wt

Kevin Kamm Magnus expansion for 2D SPDE

< Definition of o
< Definition of ad

+ Definition of Y=
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Magnus expansion - A
8 P Heuristical derivation

Expansion formulas

Order 2

Let us focus on the term for o

1e,6 1 1
o (Yt 2 ) = aadoytl,g,g (eA) — 5ad}1.c5 (A) + O, ..., 8°)

" 1 1,0
NgA—%[Yt ,gA} 1
= €A — 5 [68,5/4] [ 5 [EA,EA] Wt

1
—cA— § [6B,€A] t.

Kevin Kamm Magnus expansion for 2D SPDE

< Definition of o

< Definition of ad

< Definition of Y;

— [A,A]=0

le,6
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Magnus expansion - A
8 P Heuristical derivation

Expansion formulas

Order 2

The term for 1 can be treated the same way. We have
1 1
u(YE0) = 0B — S [A 6B Wi — 56242 + O(%, .. ).
In total, we get

£ 1 1 £
y3:/ B-5IA Bl Ws—§A2ds+/ A~ 3 [B, Al sdW.
(0] (0]
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Magnus expansion - A
8 P Heuristical derivation

Expansion formulas

Order 2

The term for 1 can be treated the same way. We have
1 1

u(vH7) =B - 5 [EABBIW: — 224 + O, ..., 8%).

In total, we get
2 ‘ 1 1.
jid :/ B— - [A Bl Ws — ZA%ds +
0 2 2

Now, we want to replace the by a to reduce the

computational effort for the implementation and avoid iterated stochastic integrals.

Kevin Kamm Magnus expansion for 2D SPDE
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Magnus expansion - A
8 P Heuristical derivation

Expansion formulas

Order 2

We observe the following relationship by 1td’s integration by parts formula

d (sWs) = sdWs + Wsds + 0
t t
@/ sdWs = tWt—/ Wi ds
0 0

Applying this formula yields
5 15 1 & 1 &
Yt = Bt — EA t"‘E[B, A]/ Wst+AWt— E[B,A] tWt—/ Wsds
0 0

1 : 1
=Yi- At [B,A]/O Wids — - B, Al tW.

Kevin Kamm Magnus expansion for 2D SPDE
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Magnus expansion o A
8 P Heuristical derivation

Expansion formulas

Order 3, 4

1t 1 1
Y3 = Y2 +[[B,AlAl </ W2ds — fwt/ Wsds+tWt2>
2 Jo 2 0 12

t 1 [t 1
+[[B, A], B] (/ sWsds—ft/ Wsds—t2Wt>.
o} 2 Jo 12

t t t
Y = Y2 +[[[B,A]l,A], A iWE Wids — lwt W2ds + 1 W2ds
12 . 47", 6/,
1 ‘ 1 [f 1 ‘ 1 1 [f
+[[[B, A], B], A] _EWf/ sWsds+§/ sWszds—Q—gtWt/ Wsds—l—ﬂtsz—Zt/ W2ds
0 0 0 (0]
t t t
1 1 ) 1.,
+[[[B,A],B],B] | —=t [ sWids+ = | s W.ds+ —t Wids
2/, 2 J, 12

1 1 1, [f
+ [[B, Al A?] (24t2Wt_2/0 sWsds—|—Zt/0 Wsds>
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Magnus expansion Space discretization
SPDE Vectorization
Numerics The stochastic Langevin equation

SPDE

t=0.000

06
Space discretization os
Vectorization 2
The stochastic Langevin equation S .
0 — 1" 2 9
S — 0
2 — 2 1
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Space discretization
SPDE Vectorization
The stochastic Langevin equation

Recap

We want to discretize the following SPDE in space only to apply the Magnus expansion

(—8tut(x, v) + h(x, v)ue(x, v) + FX(x, v)Oxur(x, v) + ¥ (x, v)Oy ue(x, v)

2 2
+ (0% (x, v)Oxue(x, v) + a"(x, v)Oyur(x, v)) dW; = 0,
UO(X, V) = ‘P(Xv V)7

1 1
+ =g (x, v)Oxxr(x, v) + & (x, v)Oxy ut(x, v) + =g""(x, v)Ou e (X, v)> dt

Kevin Kamm Magnus expansion for 2D SPDE 16 /33



Space discretization
SPDE Vectorization
The stochastic Langevin equation

Finite Differences

Let X’a’j b, be the grid for the position of a particle with ny + 2 points on the subset
[ax, bx] C R and Vv, be the grid of its velocity with n, + 2 points on the subset [a,, b,] C R

b, —
X, ={x™€elav,b)]:x" =ac+ilx, i=0,...,n, +1}, Ax = x73x7
x5 Ox nX+1

. . b, — a
Vo, = {vj"v € la, b)) v = a, +jAv, JzO,...,nv+1}, Av = ﬁ,

For simplicity we set d = ny = ny, [ax, bx] = [av, by] = [—4, 4] during our experiments later
on.

Kevin Kamm Magnus expansion for 2D SPDE 17/33



Space discretization
SPDE Vectorization

The stochastic Langevin equation

Finite Differences

We will impose zero-boundary conditions and therefore define the central finite-difference
matrices

D* =

1 1
2Axtridiag”x’”x (-1,0,1), DY = Etridiag”“”” (-1,0,1),

1 1
. wtridiag"x’"x (1,-2,1), D = Wtridiag””’”v (1,-2,1).

yeees Ny 9 YV = (UW(Xiv VJ))

Nx, Ny
1=
J:

1,....nx Uy
1

yeeey Ny

= (ue(xi, vj))i=1,...,nc

=1

for Z=F,G,H, z="f,g,h, respectively, and w € {x, v, xx,xv, w}.

Kevin Kamm Magnus expansion for 2D SPDE
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Space discretization
SPDE Vectorization
The stochastic Langevin equation

Finite Differences

(s )0t ) > () 21 ) L1, )

foralli=1,...,ncand j=1,...,n,.
In our notations a derivative in x is a multiplication of the corresponding finite-difference

matrix from the left to u?“"”, ie.
ut(Xi+17 V_/) — Ut(Xi_]_, Vj) _ DxunxJTv
2Ax i=1,...,nx £
j=1,...,ny

A derivative in v on the other hand is a multiplication from the right with the transposed
matrix. To get them both on the left hand side we need to vectorize the equation.

Kevin Kamm Magnus expansion for 2D SPDE 19/33



Space discretization
SPDE Vectorization
The stochastic Langevin equation

Kronecker product

Using the Kronecker product, it is well-known for compatible matrices D; UD, = C that

vec (C) = vec (D1 UDy) = <D2T ® D1> vec (U)

Kevin Kamm Magnus expansion for 2D SPDE 20/33



Space discretization
SPDE Vectorization
The stochastic Langevin equation

Kronecker product

Using the Kronecker product, it is well-known for compatible matrices D; UD, = C that

vec (C) = vec ( )Z( ® )

Now, applying this to our case yields

vec (D*ui"™) = vec ( ) = (In, ® D)

Kevin Kamm Magnus expansion for 2D SPDE 20/33



Space discretization
SPDE Vectorization
The stochastic Langevin equation

Hadamard product

Using the Hadamard or element-wise product, it is well-known that

vec (F © U) = vec (F) @ vec (U) = diag (vec (F)) - vec (U)

Kevin Kamm Magnus expansion for 2D SPDE 21/33



Space discretization
SPDE Vectorization
The stochastic Langevin equation

Hadamard product

Using the Hadamard or element-wise product, it is well-known that
vec (- © ) =vec (") ®vec (/) = diag(vec (")) - vec ()
Now, applying this to our case yields

vec (© © ) = diag (vec (")) - vec ( ).
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Space discretization
SPDE Vectorization
The stochastic Langevin equation

Hadamard product

Using the Hadamard or element-wise product, it is well-known that
vec (- © ) =vec (") ®vec (/) = diag(vec (")) - vec ()
Now, applying this to our case yields
vec (© © ) = diag (vec (")) - vec ( ).

In total, we have

[#7(xis v;)Ox ut(XnVJ)]: 1,..n, = diag (vec (F*)) - (In, ® D¥) - Up™™.

=1,...,ny

Kevin Kamm Magnus expansion for 2D SPDE
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Space discretization
SPDE Vectorization
The stochastic Langevin equation

Vectorization

Applying this logic to all other summands in the (SPDE) yields

B = diag (vec (H))
+ diag (vec (F¥)) - (In, ® D¥)
4L (iiag (vec(F")) - (DY & In,)
+ 5 diag (vec (6°)) - (I, ® D™)
+ g (vec (6™)) (0" © DY)
+ Ediag (vec(G")) - (D" ® I,,)
A = diag (vec (X)) - (In, ® DX)
+ diag (vec (X)) - (D" ® In,) -

Kevin Kamm Magnus expansion for 2D SPDE 22/33



Space discretization
SPDE Vectorization
The stochastic Langevin equation

Stochastic Langevin equation

h=f"=g%=g"=0"=0, flx,v)=-v, g¥=a o¢'=o (2.4)

In this special case, there exists an explicit fundamental solution I for 0 < o < y/a (cf.
Pascuccrt and PESCE (2022):p. 4 Proposition 1.1.), which is given by

[ (t,2;0,¢) ==To(t,z— m:(C)),
3 2 vZ  3wx 3x2
Folt,bevl) = mz(\[_az)p (‘a_az (t - tz+t3>)

where ¢ = (§,n) is the initial point and

e t
mi(<) = ( ot im ol Wads ) .
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Space discretization

SPDE Vectorization
The stochastic Langevin equation

Stochastic Langevin equation

Having the fundamental solution, we can solve the Cauchy-problem by integrating against the

initial datum, i.e.

nlov) = [ (el V10, [, (&, m) e

To get an explicit solution for the double integral, we will choose ¢ to be Gaussian, i.e.

i (E,m) = exp <_<€2er2)> |

24/33

Kevin Kamm Magnus expansion for 2D SPDE



Magnus expansion
SPDE
Numerics

Sparsity
Errors and Computational Times

Numerics

Sparsity
Errors and Computational Times
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Numerics

Implementation

1 We apply the Magnus expansion
iteratively on small subintervals to avoid
blow-ups.

Kevin Kamm

Sparsity
Errors and Computational Times

ty to

Magnus expansion for 2D SPDE
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ts

26/33



Sparsity

. Errors and Computational Times
Numerics

Implementation

1 We apply the Magnus expansion
iteratively on small subintervals to avoid

blow-ups. tq to ts ta ts

2 To compute the matrix exponential, we
use a special matrix-vector exponential
expmvtay2?: Without full matrix
exponential, uses sparsity, works on GPU

?see IBANEZ et al. (2022)
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Sparsity

. Errors and Computational Times
Numerics

Sparsity is our friend

Sparsity pattern of A

1 Number of non-zero diagonals of A: 2

In total 2 non-zero diagonals

Central 10000 x 10000 points of entire matrix
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Sparsity

. Errors and Computational Times
Numerics

Sparsity is our friend

Sparsity pattern of B

1 Number of non-zero diagonals of A: 2

2 Number of non-zero diagonals of B: 5

In total 5 non-zero diagonals

Central 10000 x 10000 points of entire matrix
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Sparsity

. Errors and Computational Times
Numerics

Sparsity is our friend

Sparsity pattern of [B, A]

1 Number of non-zero diagonals of A: 2
2 Number of non-zero diagonals of B: 5 8|
3 Number of non-zero diagonals of [B, A]: 5 2

Central 10000 x 10000 points of entire matrix

Kevin Kamm Magnus expansion for 2D SPDE 27 /33



Sparsity

. Errors and Computational Times
Numerics

Sparsity is our friend

Sparsity pattern of [[B, A], A]

1 Number of non-zero diagonals of A: 2

2 Number of non-zero diagonals of B: 5

8 Number of non-zero diagonals of [B, A]: 5

% Number of non-zero diagonals of [[B, A], A]: 8

In total 8 non-zero diagonals

Central 10000 x 10000 points of entire matrix
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Sparsity

. Errors and Computational Times
Numerics

Sparsity is our friend

Sparsity pattern of [[B, A], B]

1 Number of non-zero diagonals of A: 2

2 Number of non-zero diagonals of B: 5

8 Number of non-zero diagonals of [B, A]: 5

% Number of non-zero diagonals of [[B, A], A]: 8
5 Number of non-zero diagonals of [[B, A], B]: 10

In total 10 non-zero diagonals

Central 10000 x 10000 points of entire matrix

Kevin Kamm Magnus expansion for 2D SPDE 27/33



Sparsity

. Errors and Computational Times
Numerics

Sparsity is our friend

Sparsity pattern of A

1 Number of non-zero diagonals of A: 2

2 Number of non-zero diagonals of B: 5

8 Number of non-zero diagonals of [B, A]: 5

% Number of non-zero diagonals of [[B, A], A]: 8
5 Number of non-zero diagonals of [[B, A], B]: 10

s This will allow us to use &4 CUSPARSE
library efficiently for both the Magnus logarithm as well
as the matrix-vector exponential.

In total 2 non-zero diagonals

Central 10000 x 10000 points of entire matrix
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Sparsity

. Errors and Computational Times
Numerics

Error definition

We consider the mean error in all grid points

d d
AE;I,/@ — = Z ’Urefdﬁ _ Uapproxdli c Rovro%

d
Ut ’H

For our comparison later on we will take the average
over the region k = 4, i.e. [—0.25,0.25] x [—0.25,0.25]
to avoid issues due to the zero boundary condition.

Kevin Kamm Magnus expansion for 2D SPDE
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Magnus expansion .
SPDE Sparsity

N . Errors and Computational Times
umerics

Absolute Errors

Mean Abs Error exact vs m3 at t=0.025

102
10%
10°
108
1070
-4 3 2 -1 0 1 2 3 4
X

I Mean Abs Error exact vs m3

In the case d =300 and A =2.5e — 2 on [—4,4] x [—4,4]
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Sparsity

. Errors and Computational Times
Numerics

Computational times vs Error level

Error level: (1.0e — 03,1.0e — 02]

Spatial dim: 50

11685

188003

1214

155003 155003

152003 L4503 - 1

148003
1480

12 13 13

I ll Il

I i i
E, 1.0e-02 E, 1.0e-03 E, 1.0e-04 E, 1.0e-05 M, 1.0e-01 , 1.0e-02M, 1.0e-01, 1.0e-03
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Computational times

Spatial dim: 100

Numerics

Sparsity
Errors and Computational Times

vs Error level

Error level: (1.0e — 04,1.0e — 03]

Spatial dim: 150

Spatial dim: 200

Spatial dim: 250

Spatial dim: 300
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Numerics

Sparsity
Errors and Computational Times

Computational times vs Error level

Error level: (1.0e — 05, 1.0e — 04]

Spatial dim: 250

0718

750005

639005
68805

Spatial dim: 300

ssaLg

530005

ek

E, 1.0e-05 M, 2.5e-02 , 1.0e-03

Kevin Kamm

E, 1.0e-05 M, 2.5e-02 , 1.0e-03
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Sparsity

. Errors and Computational Times
Numerics

Natural step-size control

The iterated Magnus scheme has the possibility for a natural time step-size control.

lorder 2 — order 3| <tol = Step-size small enough

Computational effort:

1 Magnus logarithm of order 2 can be re-used for order 3
2 two matrix-vector exponentials per step-size reduction for each trajectory
Maybe select random smaller batch-size to determine step-size

Kevin Kamm Magnus expansion for 2D SPDE 31/33



Conclusion

We have seen how to derive the It6-stochastic Magnus expansion for SDEs with constant
matrices and used it to solve two-dimensional SPDEs with a given initial datum numerically.
The scheme has an excellent accuracy and its advantage in terms of computational effort
excels for higher spatial resolution, e.g. to have the same accuracy for d = 400 we need an

with A = 1le — 5 taking , While takes only
using A = le — 2 with M = 100 trajectories.
This is a just using one GPU while sparsity ensures an almost
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Magnus expansion
SPDE
Numerics

Thank you for your attention!

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under the Marie Sklodowska-Curie grant agreement No 813261 and is part of the ABC-EU-XVA
project.
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