

Efficient valuation of (non-)linear products for xVA

Felix Wolf¹

Joint work with Griselda Deelstra¹ and Lech Grzelak^{2,3}

¹Department of Mathematics, Université libre de Bruxelles

²Financial Engineering, Rabobank ³Mathematical Institute, Universiteit Utrecht

April 19, 2022

Rabobank

Expected exposure

Let $V_t = \mathbb{E}_t^{\mathbb{Q}} \left[\sum_j \frac{B_t}{B_{T_j}} H_{T_j} \right]$ be the discounted value of an asset (or portfolio) with payoffs H_{T_j} .

The *positive exposure* of V at time t is $E^+(t) = \max(0, V_t)$.

At initial time t_0 we can observe the *expected positive exposure* at time t :

$$\text{EE}(t_0, t) = \mathbb{E}_{t_0}^{\mathbb{Q}} \left[\frac{B_{t_0}}{B_t} \max(0, V_t) \right]$$

Expected exposure

Let $V_t = \mathbb{E}_t^{\mathbb{Q}} \left[\sum_j \frac{B_t}{B_{T_j}} H_{T_j} \right]$ be the discounted value of an asset (or portfolio) with payoffs H_{T_j} .

The *positive exposure* of V at time t is $E^+(t) = \max(0, V_t)$.

At initial time t_0 we can observe the *expected positive exposure* at time t :

$$\text{EE}(t_0, t) = \mathbb{E}_{t_0}^{\mathbb{Q}} \left[\frac{B_{t_0}}{B_t} \max(0, V_t) \right]$$

Exposures are typically obtained by Monte Carlo simulation and the EE is obtained from the sample mean:

$$\text{EE}(t_0, t) \approx \frac{1}{M} \sum_{j=1}^M \max \left(0, \frac{B_{t_0}(\omega_j)}{B_t(\omega_j)} V_t(\omega_j) \right).$$

Thus, we are interested in samples $V_t(\omega)$ of the random variable $V_t \mid F_{t_0}$.

Swap portfolio

Consider an interest rate (payer) swap V with price

$$V_t = \bar{N} \sum_{j=1}^m \tau_j P(t, T_j) \left(\frac{P(t, T_{j-1}) - P(t, T_j)}{\tau_j P(t, T_j)} - K \right).$$

In affine interest rate models, a ZCB at time t is given by

$$\begin{aligned} P(t, T) &= \mathbb{E}_t^{\mathbb{Q}} \left[\exp \left(- \int_t^T r_s \, ds \right) \right] \\ &= \exp(A(t, T) + B(t, T)r_t), \end{aligned}$$

where r_t is a random variable (e.g. Gaussian).

Thus, at time t_0 , V_t is a random variable in one “risk factor” r_t , following some distribution \mathcal{L} .

$$(V_t \mid \mathcal{F}_{t_0}) = (f(r_t) \mid \mathcal{F}_{t_0}) \sim \mathcal{L}$$

Approximating the portfolio

Let the portfolio Π consist of 1000 swaps V^1, \dots, V^{1000} . Simulating the price of one portfolio realisation $\Pi_t(\omega)$ requires 1000 swap evaluations:

$$\Pi_t(\omega) = V_t^1(\omega) + \dots + V_t^{1000}(\omega) =: g(r_t(\omega)).$$

Approximating the portfolio

Let the portfolio Π consist of 1000 swaps V^1, \dots, V^{1000} . Simulating the price of one portfolio realisation $\Pi_t(\omega)$ requires 1000 swap evaluations:

$$\Pi_t(\omega) = V_t^1(\omega) + \dots + V_t^{1000}(\omega) =: g(r_t(\omega)).$$

MC simulation requires:

- M expensive, exact evaluations $g(r_t(\omega_j))$, $j = 1, \dots, M$.

Approximating the portfolio

Let the portfolio Π consist of 1000 swaps V^1, \dots, V^{1000} . Simulating the price of one portfolio realisation $\Pi_t(\omega)$ requires 1000 swap evaluations:

$$\Pi_t(\omega) = V_t^1(\omega) + \dots + V_t^{1000}(\omega) =: g(r_t(\omega)).$$

MC simulation requires:

- M expensive, exact evaluations $g(r_t(\omega_j))$, $j = 1, \dots, M$.

Simplify with an approximation $\tilde{g}_n \approx g$:

- n expensive, exact evaluations at the interpolation points:
 $\left((r_t^1, g(r_t^1)), \dots, (r_t^n, g(r_t^n)) \right)$
- (Compute the approximation)
- M cheap evaluations of the approximation $\tilde{g}_n(r_t(\omega_j))$, $j = 1, \dots, M$.

How to interpolate between distributions?

Sample transformation

For a continuous random variable Y with cumulative distribution function F_Y , it holds $F_Y(Y) \sim \mathcal{U}[0, 1]$. Proof:

$$\begin{aligned} F_{F_Y(Y)}(u) &= \mathbb{P}[F_Y(Y) \leq u] = \mathbb{P}[F_Y^{-1}(F_Y(Y)) \leq F_Y^{-1}(u)] \\ &= \mathbb{P}[Y \leq F_Y^{-1}(u)] = F_Y(F_Y^{-1}(u)) = u \\ &= F_U(u). \end{aligned}$$

Sample transformation

For a continuous random variable Y with cumulative distribution function F_Y , it holds $F_Y(Y) \sim \mathcal{U}[0, 1]$. Proof:

$$\begin{aligned} F_{F_Y(Y)}(u) &= \mathbb{P}[F_Y(Y) \leq u] = \mathbb{P}[F_Y^{-1}(F_Y(Y)) \leq F_Y^{-1}(u)] \\ &= \mathbb{P}[Y \leq F_Y^{-1}(u)] = F_Y(F_Y^{-1}(u)) = u \\ &= F_U(u). \end{aligned}$$

“Inverse transform sampling”: Sample u from $\mathcal{U}[0, 1]$ and set $y = F_Y^{-1}(u)$.

Sample transformation

For a continuous random variable Y with cumulative distribution function F_Y , it holds $F_Y(Y) \sim \mathcal{U}[0, 1]$. Proof:

$$\begin{aligned} F_{F_Y(Y)}(u) &= \mathbb{P}[F_Y(Y) \leq u] = \mathbb{P}[F_Y^{-1}(F_Y(Y)) \leq F_Y^{-1}(u)] \\ &= \mathbb{P}[Y \leq F_Y^{-1}(u)] = F_Y(F_Y^{-1}(u)) = u \\ &= F_U(u). \end{aligned}$$

“Inverse transform sampling”: Sample u from $\mathcal{U}[0, 1]$ and set $y = F_Y^{-1}(u)$.

For two continuous random variables X and Y , we have

$$F_X(X) \sim F_Y(Y) \sim \mathcal{U}(0, 1).$$

From a sample ξ of X we can obtain a sample y of Y via

$$y = F_Y^{-1}(F_X(\xi)).$$

Stochastic collocation sampling¹

X is a random variable we can easily sample from (e.g. Gaussian), Y is expensive to sample from. We can relate samples:

$$y = F_Y^{-1}(F_X(\xi)).$$

This function $g := F_Y^{-1} \circ F_X$ is computationally expensive (inversion of F_Y).

¹L.A. Grzelak, J.A.S. Witteveen, M. Suárez-Taboada, and C.W. Oosterlee. The stochastic collocation Monte Carlo sampler: highly efficient sampling from “expensive” distributions. *Quantitative Finance*, 19(2):339–356, 2019.

Stochastic collocation sampling¹

X is a random variable we can easily sample from (e.g. Gaussian), Y is expensive to sample from. We can relate samples:

$$y = F_Y^{-1}(F_X(\xi)).$$

This function $g := F_Y^{-1} \circ F_X$ is computationally expensive (inversion of F_Y).

- ① Find interpolation points x_1, \dots, x_n ("collocation points") and evaluate exactly: $y_i = g(x_i)$, $i = 1, \dots, n$.
- ② Build approximation function $\tilde{g}_n \approx g$ based on these n points.
- ③ Obtain (approximated) samples $\tilde{y}_i = \tilde{g}_n(\xi_i)$ of Y from (cheap) samples ξ_i of X .

¹L.A. Grzelak, J.A.S. Witteveen, M. Suárez-Taboada, and C.W. Oosterlee. The stochastic collocation Monte Carlo sampler: highly efficient sampling from "expensive" distributions. Quantitative Finance, 19(2):339–356, 2019.

Why collocation?

“Classic interpolation” framework:

$$\Pi_t(\omega) = g(r_t(\omega)) \approx \tilde{g}_n(r_t(\omega))$$

Collocation framework:

$$y = (F_Y^{-1} \circ F_X)(\xi) = g(\xi) \approx \tilde{g}_n(\xi).$$

We know the cheap distribution X (e.g. interest rate) and the function g , but we do not need knowledge about the distribution of Y .

Why collocation?

“Classic interpolation” framework:

$$\Pi_t(\omega) = g(r_t(\omega)) \approx \tilde{g}_n(r_t(\omega))$$

Collocation framework:

$$y = (F_Y^{-1} \circ F_X)(\xi) = g(\xi) \approx \tilde{g}_n(\xi).$$

We know the cheap distribution X (e.g. interest rate) and the function g , but we do not need knowledge about the distribution of Y .

Difference to “standard” function interpolation: We evaluate \tilde{g}_n at random points from the known distribution X .

Why collocation?

“Classic interpolation” framework:

$$\Pi_t(\omega) = g(r_t(\omega)) \approx \tilde{g}_n(r_t(\omega))$$

Collocation framework:

$$y = (F_Y^{-1} \circ F_X)(\xi) = g(\xi) \approx \tilde{g}_n(\xi).$$

We know the cheap distribution X (e.g. interest rate) and the function g , but we do not need knowledge about the distribution of Y .

Difference to “standard” function interpolation: We evaluate \tilde{g}_n at random points from the known distribution X .

Example Lagrange polynomial over interpolation points x_1, \dots, x_n :

$$\tilde{g}_n(\xi) = \sum_{i=1}^n g(x_i) \ell_i(\xi),$$

where

$$\ell_i(\xi) = \prod_{j=1, j \neq i}^n \frac{\xi - x_j}{x_i - x_j}$$

Connection to Gaussian Quadrature

Let p_i be an orthogonal, polynomial basis in $L^2(X)$, i.e.

$$\int_a^b p_i(x)p_j(x)f_X(x)dx = \delta_{ij}\mathbb{E}[p_i(X)^2].$$

We want to find weights w_i and collocation points x_i , $i = 1, \dots, n$, so that

$$\int_a^b g(x)f_X(x)dx \approx \sum_{i=1}^n g(x_i)w_i.$$

Find weights and points by consideration of enough exact integrals:

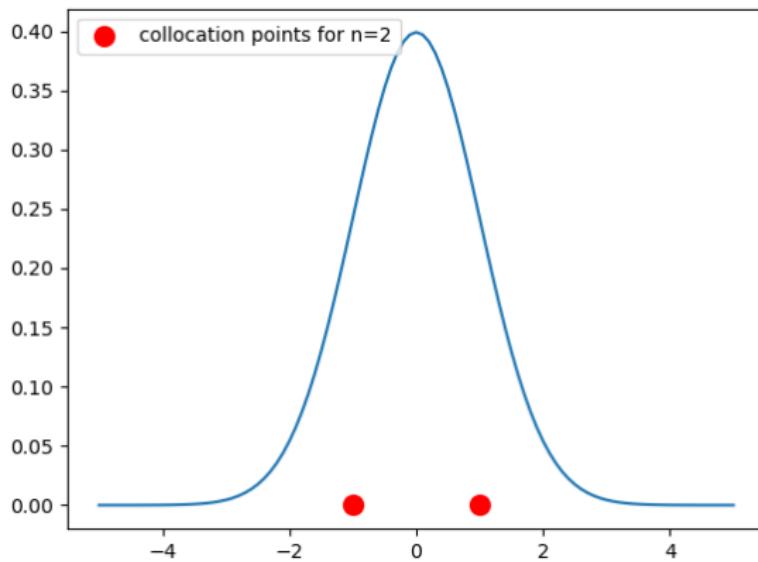
$$\int_a^b p_0(x)dx = w_1p_0(x_1) + \dots + w_np_0(x_n)$$

$$\int_a^b p_1(x)dx = w_1p_1(x_1) + \dots + w_np_1(x_n)$$

...

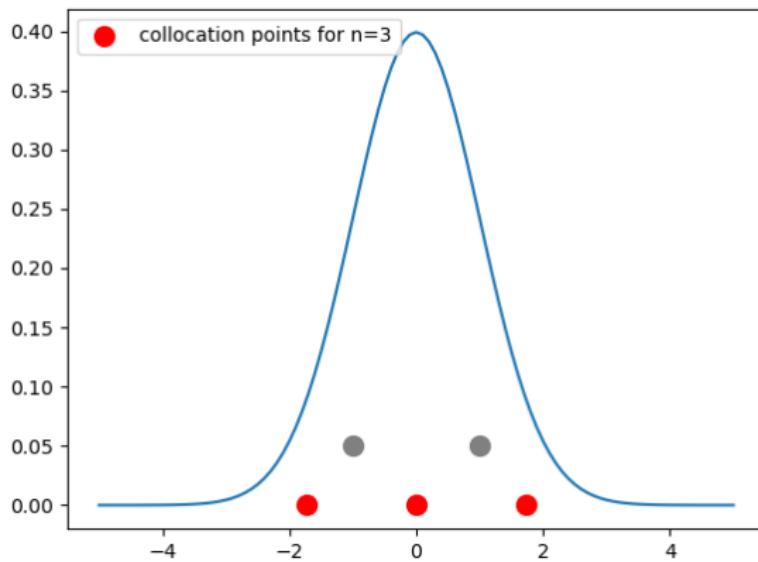
Optimal Collocation Points

$$\tilde{g}_n(\xi) = \sum_{i=1}^n g(x_i) \ell_i(\xi), \quad \ell_i(\xi) = \prod_{j=1, j \neq i}^n \frac{\xi - x_j}{x_i - x_j}$$



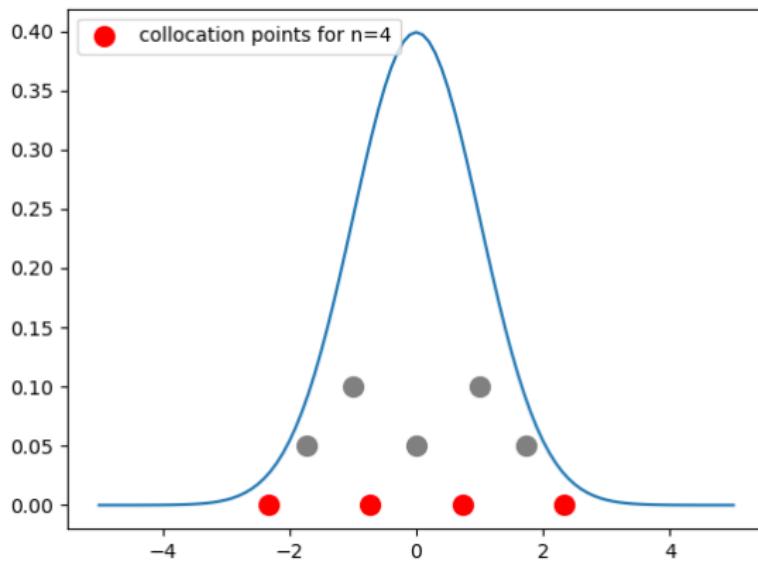
Optimal Collocation Points

$$\tilde{g}_n(\xi) = \sum_{i=1}^n g(x_i) \ell_i(\xi), \quad \ell_i(\xi) = \prod_{j=1, j \neq i}^n \frac{\xi - x_j}{x_i - x_j}$$



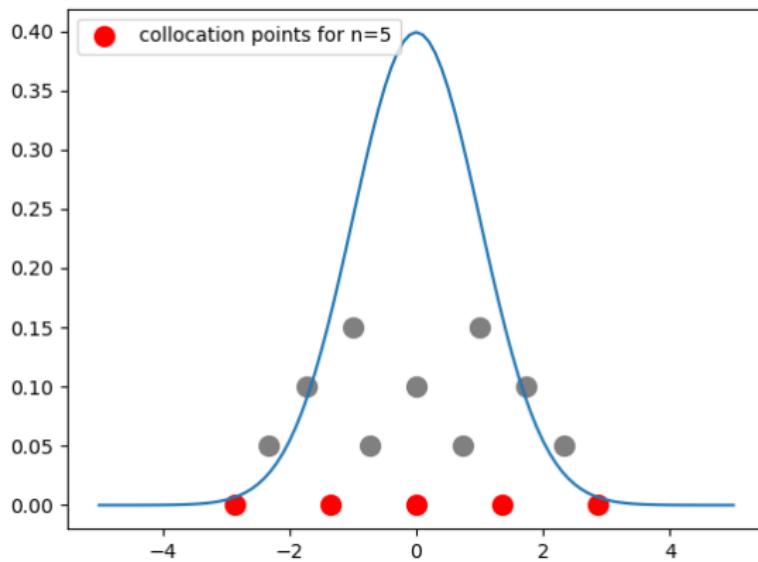
Optimal Collocation Points

$$\tilde{g}_n(\xi) = \sum_{i=1}^n g(x_i) \ell_i(\xi), \quad \ell_i(\xi) = \prod_{j=1, j \neq i}^n \frac{\xi - x_j}{x_i - x_j}$$



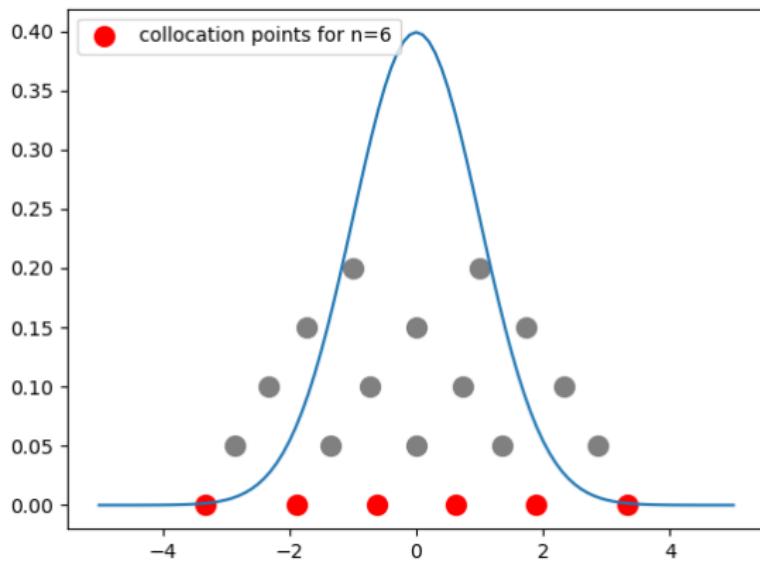
Optimal Collocation Points

$$\tilde{g}_n(\xi) = \sum_{i=1}^n g(x_i) \ell_i(\xi), \quad \ell_i(\xi) = \prod_{j=1, j \neq i}^n \frac{\xi - x_j}{x_i - x_j}$$



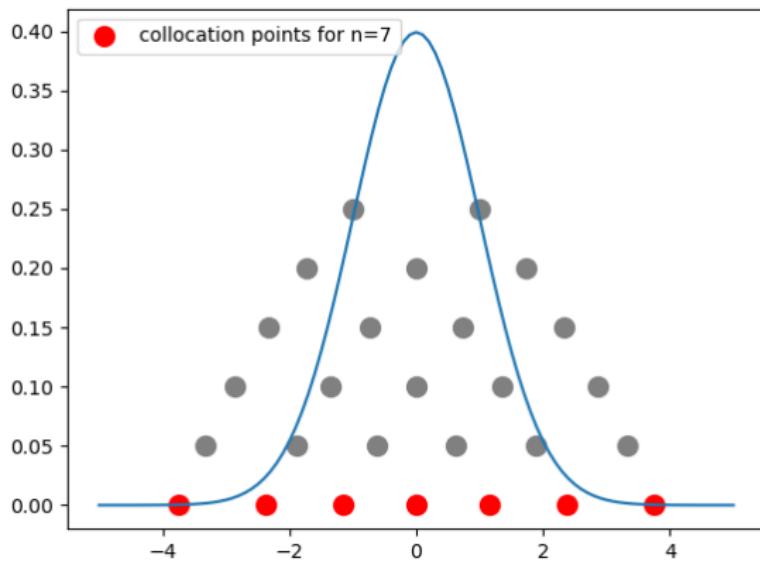
Optimal Collocation Points

$$\tilde{g}_n(\xi) = \sum_{i=1}^n g(x_i) \ell_i(\xi), \quad \ell_i(\xi) = \prod_{j=1, j \neq i}^n \frac{\xi - x_j}{x_i - x_j}$$



Optimal Collocation Points

$$\tilde{g}_n(\xi) = \sum_{i=1}^n g(x_i) \ell_i(\xi), \quad \ell_i(\xi) = \prod_{j=1, j \neq i}^n \frac{\xi - x_j}{x_i - x_j}$$



Choice of interpolation function

The approximation \tilde{g}_n ...

- must be cheap to evaluate:
“ n exact + M cheap evaluations $\ll M$ exact valuations”
- must offer high accuracy
- may preserve properties of g (e.g. monotonicity)
- may be differentiable

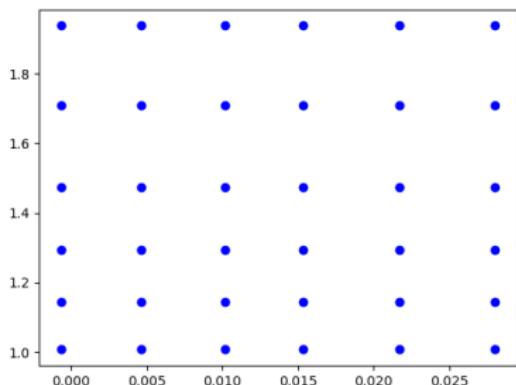
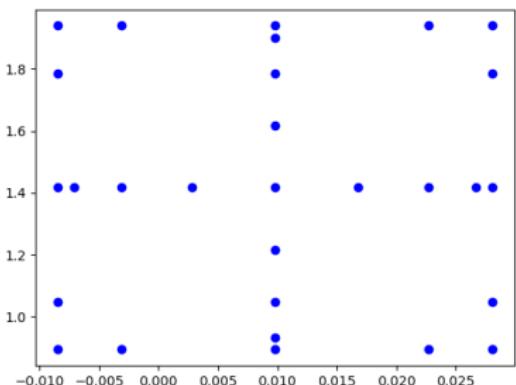
There are many options:

Lagrange polynomials, Chebyshev polynomials, Hermite polynomials, ...

Higher dimensions²

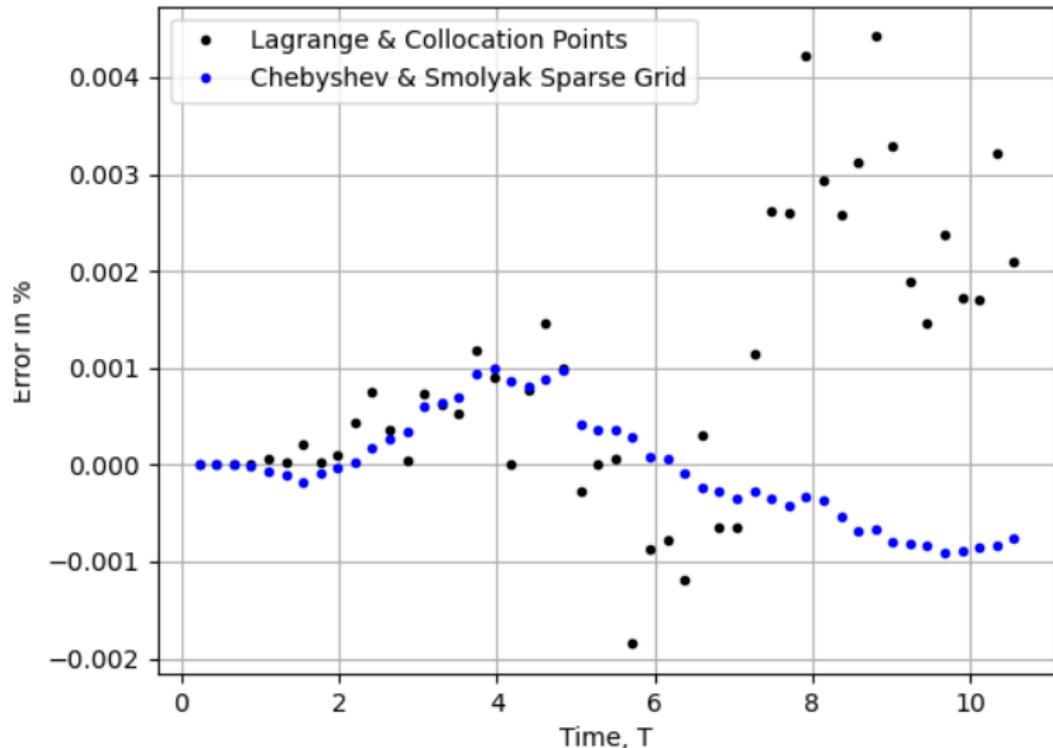
The number of interpolation points should not grow too fast.

Cartesian grid of (optimal) collocation points vs. Smolyak sparse grid



²L.A. Grzelak. Sparse Grid Method for Highly Efficient Computation of Exposures for xVA. arXiv:2104.14319, 2021.

Hybrid portfolio of (many) stock contracts and swaps.



Many directions to investigate

- Error bounds for different interpolation methods (in higher dimensions)
- Interplay between interpolation points and interpolation methods
- Effects on portfolios of non-linear derivatives

Many directions to investigate

- Error bounds for different interpolation methods (in higher dimensions)
- Interplay between interpolation points and interpolation methods
- Effects on portfolios of non-linear derivatives

Thank you for listening!