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Expected exposure

Let V, = EY {Z %HTJ] be the discounted value of an asset (or portfolio)
j j
with payoffs Hr,.

The positive exposure of V at time t is ET(t) = max(0, V;).
At initial time ty we can observe the expected positive exposure at time t:

B
EE(ty, t) = E [ 22 max(0, vt)}
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Let V, = EY {Z %HTJ] be the discounted value of an asset (or portfolio)
j J

with payoffs Hr,.

The positive exposure of V at time t is ET(t) = max(0, V;).

At initial time ty we can observe the expected positive exposure at time t:

B;
EE(to, t) = E2 | 222 max(0, vt)]
B:

Exposures are typically obtained by Monte Carlo simulation and the EE is
obtained from the sample mean:

E(to, t) ~ — Zmax( Bto(wj)) Vt(wj)).

Thus, we are interested in samples V;(w) of the random variable V; | Fy,.
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Swap portfolio

Consider an interest rate (payer) swap V with price

(t, Tie1) — P(t, T))
NZTJ tT( ;JFi(t,Tj) J —K).

In affine interest rate models, a ZCB at time t is given by

T

P(t, T) :E(?[exp(—/ rsds)]

t
= exp(A(t, T) + B(t, T)rt),
where r; is a random variable (e.g. Gaussian).

Thus, at time ty, V; is a random variable in one “risk factor” r, following
some distribution L.

(Ve | F) = (f(re) | Fy) ~ L
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Approximating the portfolio

Let the portfolio IT consist of 1000 swaps V', ..., V1990 Simulating the
price of one portfolio realisation II;(w) requires 1000 swap evaluations:

e(w) = Vi (W) + - + VI (w) = g(r(w)).
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Approximating the portfolio

Let the portfolio IT consist of 1000 swaps V', ..., V1990 Simulating the
price of one portfolio realisation II;(w) requires 1000 swap evaluations:

Me(w) = Vi) + -+ VI(w) = g(re(w)).

MC simulation requires:
@ M expensive, exact evaluations g(re(wj)), j=1,..., M.

Simplify with an approximation g, ~ g:
@ n expensive, exact evaluations at the interpolation points:
((rsgt)), o (2 8002)) )
o (Compute the approximation)
@ M cheap evaluations of the approximation g,,(rt(wj)), j=1,...,M.

How to interpolate between distributions?
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Sample transformation

For a continuous random variable Y with cumulative distribution function
Fy, it holds Fy(Y) ~ U[0, 1]. Proof:

Fey(vy(u) = PIFy(Y) < u] = PIFy (Fy(Y)) < Fy ' (u)]
=PlY < Fy'(u)] = Fy(Fy ' (u) = u
= Fu(u).
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Sample transformation

For a continuous random variable Y with cumulative distribution function
Fy, it holds Fy(Y) ~ U[0, 1]. Proof:

Fry(v)(u) = PIFy(Y) < u]l = P[F 1 (Fy(Y)) < Fyl(u)]
=PIY < Fyl(u)] = Fy(Fy ' (u) = u
= Fy(u).
“Inverse transform sampling”: Sample u from U£[0, 1] and set y = F;l(u).

For two continuous random variables X and Y, we have
Fx(X) ~ Fy(Y) ~U(0,1).

From a sample £ of X we can obtain a sample y of Y via

y = F ' (Fx ().
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Stochastic collocation sampling?

X is a random variable we can easily sample from (e.g. Gaussian), Y is
expensive to sample from. We can relate samples:

y = FyH(Fx(€)).

This function g := F;l o Fx is computationally expensive (inversion of
Fy).

'L.A. Grzelak, J.A.S. Witteveen, M. Suérez-Taboada, and C.W. Qosterlee. The
stochastic collocation Monte Carlo sampler: highly efficient sampling from “expensive”
distributions. Quantitative Finance, 19(2):339-356, 2019.
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Stochastic collocation sampling?

X is a random variable we can easily sample from (e.g. Gaussian), Y is
expensive to sample from. We can relate samples:

y = FyH(Fx(€)).

This function g := F;l o Fx is computationally expensive (inversion of
Fy).
@ Find interpolation points xi, ..., x, (“collocation points”) and evaluate
exactly: yi=g(x;), i=1,...,n.
@ Build approximation function g, ~ g based on these n points.

© Obtain (approximated) samples y; = gn(&;) of Y from (cheap)
samples &; of X.

'L.A. Grzelak, J.A.S. Witteveen, M. Suérez-Taboada, and C.W. Qosterlee. The
stochastic collocation Monte Carlo sampler: highly efficient sampling from “expensive”
distributions. Quantitative Finance, 19(2):339-356, 2019.
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Why collocation?

“Classic interpolation” framework:

It(w) = g(re(w)) = gn(re(w))

Collocation framework:

y = (Fy'oFx)(€) = g(&) ~ &n(&)-

We know the cheap distribution X (e.g. interest rate) and the function g,
but we do not need knowledge about the distribution of Y.
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Why collocation?

“Classic interpolation” framework:

I (w) = g(re(w)) ~ gn(re(w))
Collocation framework:
y = (Fy'o Fx)(€) = (&) = & (9).

We know the cheap distribution X (e.g. interest rate) and the function g,
but we do not need knowledge about the distribution of Y.

Difference to “standard” function interpolation: We evaluate g, at random
points from the known distribution X.

Example Lagrange polynomial over interpolation points xi, ..., xu:

gn(§) = Zg(xi)ei(f)a

where

Xi — Xj 6/12



Connection to Gaussian Quadrature

Let p; be an orthogonal, polynomial basis in L2(X), i.e.
b

| im0 ()b = 35l (X))

a
We want to find weights w; and collocation points x;, i = 1,...,n, so that
b

/ g(x)fx(x)dx ~ > g(xi)wi.
i=1

a

Find weights and points by consideration of enough exact integrals:

b
/ po(x)dx = wipo(x1) + -+ + Wapo(Xn)
a

b
/ p1(x)dx = wipi(x1) + -+ + Wap1(Xn)
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Optimal Collocation Points
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Optimal Collocation Points
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Optimal Collocation Points
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Optimal Collocation Points
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Optimal Collocation Points
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Choice of interpolation function

The approximation g, ...

@ must be cheap to evaluate:
“n exact + M cheap evaluations <« M exact valuations”

@ must offer high accuracy
@ may preserve properties of g (e.g. monotonicity)
@ may be differentiable

There are many options:

Lagrange polynomials, Chebyshev polynomials, Hermite polynomials, ...
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Higher dimensions?

The number of interpolation points should not grow too fast.

Cartesian grid of (optimal) collocation points vs. Smolyak sparse grid
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2| A. Grzelak. Sparse Grid Method for Highly Efficient Computation of Exposures for
xVA. arXiv:2104.14319, 2021.
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Hybrid portfolio of (many) stock contracts and swaps.

Error in %
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Many directions to investigate

@ Error bounds for different interpolation methods (in higher
dimensions)

@ Interplay between interpolation points and interpolation methods

o Effects on portfolios of non-linear derivatives
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Many directions to investigate

e Error bounds for different interpolation methods (in higher
dimensions)

@ Interplay between interpolation points and interpolation methods

o Effects on portfolios of non-linear derivatives

Thank you for listening!
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