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Background

Financial exposure

The exposure of an investment can be defined as:

”The amount an investor stands to lose if the counyterparty defaults.”

We are interested in the exposure of a portfolio of derivatives

ENet
t = max

{
J∑

j=1

Vj(t,Xt), 0

}
, Et =

J∑
j=1

max{Vj(t,Xt), 0}.

The distributions of ENet = (ENet
t )t∈[0,T ] and E = (Et)t∈[0,T ] are referred to as exposure

profiles.
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Background

Why exposures?

The exposure is an important building block in computations of Valuation Adjustments
(XVAs).

Credit Valuation Adjustment: CVA = E
[
D0,τC LGDC

τC EτC
]
,

Debit Valuation Adjustment: DVA = E
[
D0,τB LGDB

τB EτB
]
,

Funding Valuation Adjustment: FVA = E

[∫ τB

0
D0,t FSB

t Et dt

]
,

Capital Valuation Adjustment: KVA = E
[∫ T

0
D0,t Kt RWAt (E) dt

]
,

...
... =

...
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Background

Exposure profiles

� In general, no access to the distribution of the exposure.

� In special cases, possible to draw random samples (Et(ω))t∈[0,T ], distributed exactly
as E .

� In most cases, the best we can do is to draw samples from a distribution, which in
some sense, is close to E .

The distribution of E is approximated with its empirical counterpart. Common measures
are:

Expected exposure: EE(t) = E [Et ] ,

Potential future exposure: PFEα(t) = inf
{
a ∈ R

∣∣Q (Et ≤ a) ≥ α
}
.
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Background

Example - European call option under Black–Scholes dynamics

Consider the single European call option, i.e., J = 1,

St = s0e(r−σ
2
2 )(T−t)+σWt , g(ST ) = max{ST − K , 0}.

Option value, given market state (t, St):

V (t,St) = E
[
e−r(T−t)g(ST )

∣∣St

]
= N(d1)St + N(d2)Ke−r(T−t),

where d1 = 1
σ
√

T−t

[
log St

K
+
(
r + σ2

2

)
(T − t)

]
and d2 = d1 − σ

√
T − t.

We can sample exactly from EBS by(
EBS
t (ω)

)
t∈[0,T ]

= (max{V (t, St(ω)), 0})t∈[0,T ] = (V (t, St(ω)))t∈[0,T ] .
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Background

How to sample from an approximate distribution?

Approximations are needed e.g., when we have a less idealized asset process than GBM,
early exercise features, etc.

Classical methods for sampling from the exposure process:

Approximate the valuation PDE with e.g., finite elements/differences, and evaluate
the solution along stochastic paths of the underlying asset/risk-factor process,

Approximate conditional expectations with least squares regression,

Approximate the valuation BSDE pathwise with e.g., monte–carlo based regression,

Approximate the valuation function with Fourier-based expansion and evaluate the
solution along stochastic paths of the underlying asset/risk-factor process.
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Background

Our aim is to introduce a method, capable of approximating the exposure profiles for a
portfolio of (potentially) high-dimensional and exotic, derivatives.

J derivatives and a risk-factor process, X , taking on values in Rd ,

Denote by T (t) = {T1(t), T2(t) . . . , TJ(t)} the space of all X−stopping times
vectors taking on values in T(t) = {T1(t), T2(t), . . . ,TJ(t)} ⊆ [0,T ]J .

Then, the valuation function of the portfolio is given by

Π(t, x) = sup
τ∈T (t)

J∑
j=1

Et,x

[
Dt,τj gj(Xτj )

]
.

and the exposures at market state, (t,Xt), are given by

ENet
t = max

{
J∑

j=1

Vj(t,Xt)I{τ∗0,j>t}, 0

}
, Et =

J∑
j=1

max
{
Vj(t,Xt)I{τ∗0,j>t}, 0

}
,

where τ∗0,j is the stopping strategy that satisfies the expression above. Note that E is not

a Markov process but
(
Et , I{τ∗0,1>t}, . . . , I{τ∗0,J>t}

)
t∈[0,T ]

is.
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Background

High level picture of algorithm

Divide problem into two sub-problems and solve each sub-problem separately:

Phase I: Use neural networks to learn the optimal stopping rule from Monte-Carlo
samples of the underlying risk factors.

Phase II: Apply the stopping rule from Phase I on Monte-Carlo samples from the
underlying risk factors to generate cashflow-paths. Use neural networks to learn the
mapping from the underlying risk factors to the exposure/portfolio value by using the
cashflows as ”labels” (minimize the MSE between our approximation and the
cashflow-paths).
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Background

References

Phase I is a generalization of the so-called Deep Optimal Stopping algorithm (Becker et
al. ”Deep Optimal Stopping.” Journal of Machine Learning Research 20.74 (2019):
1-25.).

Presentation is based on:
K. Andersson, & C. W. Oosterlee. ”A deep learning approach for computations of
exposure profiles for high-dimensional Bermudan options.” arXiv preprint
arXiv:2003.01977, (2020).

K. Andersson, & C. W. Oosterlee. ”Learning exposure profiles for portfolios of exotic
derivatives.” working paper, (2020).
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Algorithm Phase I - Learning stopping policies

Continuation/exercise regions and decision functions

For derivative j ∈ {1, 2, . . . , J},

Exercise region: Ej(t) =
{
x ∈ Rd |Vj(t, x) = gj(t, x) and t ∈ Tj(0)

}
,

Continuation region: Cj(t) =
{
x ∈ Rd |Vj(t, x) > gj(t, x) or t /∈ Tj(0)

}
,

Optimal decision function: f ∗j (t, x) = I{x∈Ej (t)}.

We then define the (optimal) decision vector, consisting of J, (optimal) decision functions

f ∗(t, x) = (f ∗1 (t, x), f ∗2 (t, x), . . . , f ∗J (t, x))T .
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Algorithm Phase I - Learning stopping policies

Stopping times in terms of decision functions

Denote the set of exercise dates (the dates where at least one of the derivatives may be
exercised) by TΠ(t) =

⋃J
j=1Tj(t) and the number of exercise dates by N = |TΠ(0)|. We

use the simplified notation

T
Π(0) = {T1,T2, . . . ,TN}.

The optimal exercise strategy (at portfolio level) is then given by the X−stopping time

τ [f ∗](X ) =
N∑

k=1

Tk f ∗(Tk ,XTk )�
k−1∏
m=1

(1J − f ∗(Tm,XTm )) ,

or written component-wise

τj [f
∗
j ](X ) = (τ [f ∗](X ))j =

N∑
k=1

Tk f
∗
j (Tk ,XTk )

k−1∏
m=1

(
1− f ∗j (Tm,XTm )

)
.
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Algorithm Phase I - Learning stopping policies

Valuation function in terms of the decision vector

Let t ∈ (Tn−1,Tn], and introduce short-hand notation

τ ∗n = τ [f ∗](X t,x), and τ∗n,j =
(
τ [f ∗](X t,x)

)
j
,

and the portfolio value can be written as

Π(t, x) =
J∑

j=1

Et,x

[
Dt,τ∗n,j

gj(τ
∗
n,j ,Xτ∗n,j )

]
.
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Algorithm Phase I - Learning stopping policies

Represent decision functions by neural networks and introduce loss function

For n ∈ {1, 2, . . . ,N}, we replace the optimal decision function f ∗(Tn, ·) with a neural
network f θnn : Rd → {0, 1}J .

Want to find set of parameters Θ1 = {θ1, θ2, . . . , θN}, such that

(f ∗(T1, ·), f ∗(T2, ·), . . . , f ∗(TN , ·))T ≈ (f θ11 , f θ22 , . . . , f θNN )T = f Θ1
1 .

Want to find θn, such the loss function is minimized

−ETn

[
J∑

j=1

(
f θnn (XTn )

)
j
gj(Tn,XTn )

+

(
1−

(
f θnn (XTn )

)
j

)
DTn,τ

∗
n+1,j

gj
(
τ∗n+1,j ,Xτ∗n+1,j

)]
.

Problems:
1 In general, we have no access to the expected value above.

Solution: Approximate with sample mean.
2 f θnn is discontinuous, which makes a gradient decent type algorithm unsuitable.
3 We have no access to τ ∗n+1.
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Algorithm Phase I - Learning stopping policies

Loss function

2 Solution: While optimizing, replace the discontinuous function f θnn , with
F θnn : Rd → (0, 1)J . After optimization, set

f θnn = a ◦ F θnn ,

where a is the component-wise round-off function (a(x))j = I{xj≥ 1
2 }
.

3 Solution: If derivative j has maturity at some n ∈ {1, 2, . . . ,N}, we know that

f θnj,n ( · ) ≡ I{gj (Tn, · )>0}, and f θkj,k ( · ) ≡ 0, for k > n.

Therefore, at maturity of the portfolio, the optimal decision function is known and
we can set f θNN = f ∗(TN , ·). The optimization can then be carried out, recursively,
backwards in time.
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Algorithm Phase I - Learning stopping policies

Comments on the structure of the neural networks

We use 1-3 hidden layers, with 15-30 nodes in each hidden layer,

We use the (component-wise) ReLU activation function in the hidden layers and the
(component-wise) sigmoid function in the output layer to guarantee that all
component are mapped to (0, 1),

The Adam optimizer is used to optimize the trainable parameters,

More details can be found in references.
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Algorithm Phase I - Learning stopping policies

Algorithm

Sample Mtrain training samples (x train
t (m))t∈[0,T ], distributed as X . For

m ∈ {1, 2, . . . ,Mtrain}, and j ∈ {1, 2, . . . , J}, set CFN,j(m) = gj(TN , x
train
tN (m))

For n = N − 1,N − 2, . . . , 1, do the following:
1 Find a θ̂n ∈ Rqn which approximates

θ̂∗n ∈ arg max
θ∈Rqn

(
1

Mtrain

Mtrain∑
m=1

J∑
j=1

(
F θn
(
x train
Tn

(m)
))

j
gj
(
Tn, x

train
Tn

(m)
)

+

(
1−

(
F θn
(
x train
Tn

(m)
))

j

)
CFn+1,j(m)

)
.

2 For all j and m, update CFn,j(m):

CFn,j(m) =

(
f θ̂nn

(
x train
Tn

(m)
))

j

gj
(
Tn, x

train
Tn

(m)
)

+

(
1−

(
f θ̂nn

(
x train
Tn

(m)
))

j

)
DTn,Tn+1CFn+1,j(m).
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Algorithm Phase I - Learning stopping policies

Portfolio valuation

Sample Mval valuation samples,
(
xval
t (m)

)
t∈[0,T ]

, distributed as X . Denote the vector of
optimized decision functions by

f Θ̂n
n =

(
f θ̂nn , f θ̂n+1

n+1 , . . . , f θ̂N−1
N−1

)
,

and f Θ̂ = f Θ̂1
1 . We then obtain for sample m, i.e., xval(m), the following stopping rule

τ Θ̂
0,j(m) =

(
τ
[
f Θ̂
] (

xval(m)
))

j
=

N∑
k=n

Tk

(
f θ̂kk

(
xval
Tk

(m)
))

j

k−1∏
`=1

(
1−

(
f θ̂``
(
xval
T` (m)

))
j

)
.

The estimated portfolio value at t = 0 is then given by

Π̂(0, x0) =
1

Mval

Mval∑
m=1

J∑
j=1

gj

(
τ Θ̂
0,j(m), xval

τ Θ̂
0,j (m)

(m)

)
B
τ Θ̂
0,j (m)

.
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Algorithm Phase II - Learning portfolio exposures

Using stopping rule from Phase I

For t ∈ (Tn−1,Tn] denote the vector-valued discounting process and pay-off function by

D(t, τ ∗n ) =

D(t, τ∗n,1)
...

D(t, τ∗n,J)

 , g(τ ∗n ,X
t,x) =


g1(τ∗n,1,Xτ∗n,1)

...
gJ(τ∗n,J ,Xτ∗n,J )

 ,

and the vector-valued process of discounted cashflows by

Yt = Dt,τ∗
n
� g(τ ∗n ,Xτ∗

n
), Yt,j = (Yt)j .

Furthermore, define the exercise process

It =


I{τ∗0,1<t}

...
I{τ∗0,J<t}

 .

Note! Neither Yt nor It are Ft−measurable.
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Algorithm Phase II - Learning portfolio exposures

Regression function

Recall that for t, s ∈ [0,T ], with t ≤ s and for Z : [0,T ]× Ω→ Ra, square integrable, a
function m which satisfies

m(t, ·) ∈ arg min
h∈D(Ra ;Rb)

Et [‖h(Xt)− Zs ]‖22],

is given by the conditional expectation (assuming X is a Markov process)

m(t, x) = Et,x [Zs ].

22 / 33



Algorithm Phase II - Learning portfolio exposures

Regression functions in our context

Recall the equations for the exposures

ENet
t = max

{
J∑

j=1

Vj(t,Xt)I{τ∗0,j>t}, 0

}
, Et =

J∑
j=1

max
{
Vj(t,Xt)I{τ∗0,j>t}, 0

}
.

For t ∈ (Tn−1,Tn], denote V (t, · ) = (V1(t, · ), . . .VJ(t, · ))T . The essential parts of
ENet and E can the expressed as regression functions

V (t, ·) ∈ arg min
h∈D(Rd ;RJ )

Et

[
‖h(Xt)− Yt‖22

]
,

J∑
j=1

Vj(t, ·)I{τ∗0,j>t} ∈ arg min
h∈D(Rd×{0,1}J ;R)

Et

∣∣∣∣∣h(Xt , It)−
J∑

j=1

Yt,j I{τ∗0,j<t}

∣∣∣∣∣
2
 .
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Algorithm Phase II - Learning portfolio exposures

Approximating the regression functions

Given Mreg samples, (x reg
t )t∈[0,T ], distributed as X , and for t ∈ (Tn−1,Tn], we define the

empirical regression problems

min
h∈D

 1
Mreg

Mreg∑
m=1

‖h(xt(m))− yt(m)‖22

 , (1)

min
h∈D

 1
Mreg

Mreg∑
m=1

|h(xt(m), It(m))−
J∑

j=1

yt,j(m)I{τ∗n,j (m)<t}|2
 . (2)

The classical way to approximate the regression function is Least Squares Monte-Carlo
(LSMC) regression. Search for functions in a smaller function class, e.g., polynomials of
the components of Xt up to degree 4, including cross-terms.

� Closed form solution when D is the class of linear combinations of polynomials,

� Overcomes the curse of dimensionality (but may run into memory issues instead),

� Not easy to choose appropriate basis functions when function surface to approximate
is complicated,

� Not trivial to approximate a vector valued function in (1) or how to handle It(m) in
(2) (piecewise linear regression?).
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Algorithm Phase II - Learning portfolio exposures

Neural network-based regression

By letting D be the class of functions which can be represented by a neural network
(with all hyperparameters specified), we can optimize the parameters in the neural
network to approximately solve (1) and (2).

� Possible to specify larger function classes (than for LSMC) without running out of
memory,

� No need to specify clever basis functions, since difficulty rather lies in solving the
optimization problem,

� No closed form solution for optimization problem (black box),

� More time consuming than LSMC.

Summary: In our experience, for J = 1, with low-dimensional X and relatively simple
pay-off functions LSMC is to prefer. For J > 1, or/and high-dimensional X , or/and
complicated pay-off functions neural network-based regression seems to be more accurate.
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Algorithm Phase II - Learning portfolio exposures

Neural network-based regression

For n ∈ {1, 2, . . . ,N}, use neural networks of the form

hΦn
n : Rd → RJ , and hΦn

n : Rd × {0, 1}J → R

with empirical loss functions given by

1
Mreg

Mreg∑
m=1

‖hΦ1
n

n (xt(m))− yt(m)‖22,

1
Mreg

Mreg∑
m=1

|hΦ2
n

n (xt(m), It(m))−
J∑

j=1

yt,j(m)I{τ∗0,j (m)<t}|2.
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Numerical experiments Bermudan options under Black–Scholes dynamics

Black–Scholes dynamics

The only risk factor is the d−dimensional asset process, with component
i ∈ {1, 2, . . . , d} given by

(St)i = (s0)iexp
(

(r − qi −
1
2
σ2
i )t + σi (Wt)i

)
,

with risk-free rate r , continuously paying dividend (of asset i) qi , diffusion coefficient σi ,
and W a d−dimensional, correlated Brownian motion.

Max-call-option:
g(s) = (max {s1, s2 . . . , sd} − K)+ .

Arithmetic-average-option:

g(s) =

(
1
d

d∑
i=1

si − K

)+

.

Geometric-average-option:

g(s) =

( d∏
i=1

si

) 1
d

− K

+

.
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Numerical experiments Bermudan options under Black–Scholes dynamics

Numerical results

We consider a portfolio of the put and call versions of Bermudan max-options,
arithmetic-average-option, and geometric average option with 10 exercise dates.

M-call M-put A-call A-put G-call G-put
Ref 13.902 9.530 NA NA NA NA
DOS 13.899 9.528 4.364 16.775 4.930 15.318
SGBM 13.921 9.535 4.366 16.781 4.941 15.319
LSMC 13.851 9.520 4.363 16.778 4.927 15.309

The above results are the average values of 5 independent runs. For LSMC and SGBM
each derivative value is computed individually, for DOS all are computed in one run.
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Numerical experiments Bermudan options under Black–Scholes dynamics

Figure: Approximate exercise boundaries for a two-dimensional max-call option at t8 ≈ 2.67.
From top left to bottom right: FEM (American option), DOS, SGBM and LSMC respectively.
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Numerical experiments Bermudan options under Black–Scholes dynamics

Figure: EE, PFE97.5, and PFE0.25 computed with neural network-based regression with outputs
in R and RJ , respectively.
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Numerical experiments Bermudan swaptions under Hull–White dynamics

In this example we consider a portfolio of 6 Bermudan interest rate swaptions with
partially overlapping exercise dates, and different strike prices.

Figure: EE, PFE97.5, and PFE0.25 computed with neural network-based regression and with
SGBM (individually for each derivative).
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