

# Learning exposure profiles for portfolios of exotic derivatives

Kristoffer Andersson

Centrum Wiskunde & Informatica

Machine Learning in Quantitative Finance and Risk Management,  
July 2, 2020

# Table of contents

## 1 Background

## 2 Algorithm

- Phase I - Learning stopping policies
- Phase II - Learning portfolio exposures

## 3 Numerical experiments

- Bermudan options under Black–Scholes dynamics
- Bermudan swaptions under Hull–White dynamics

## Financial exposure

The exposure of an investment can be defined as:

*"The amount an investor stands to lose if the counterparty defaults."*

We are interested in the exposure of a portfolio of derivatives

$$E_t^{\text{Net}} = \max \left\{ \sum_{j=1}^J V_j(t, X_t), 0 \right\}, \quad E_t = \sum_{j=1}^J \max\{V_j(t, X_t), 0\}.$$

The distributions of  $E^{\text{Net}} = (E_t^{\text{Net}})_{t \in [0, T]}$  and  $E = (E_t)_{t \in [0, T]}$  are referred to as **exposure profiles**.

## Why exposures?

The exposure is an important building block in computations of **Valuation Adjustments** (XVAs).

$$\text{Credit Valuation Adjustment: } \text{CVA} = \mathbb{E} \left[ D_{0,\tau^C} \text{LGD}_{\tau^C}^C E_{\tau^C} \right],$$

$$\text{Debit Valuation Adjustment: } \text{DVA} = \mathbb{E} \left[ D_{0,\tau^B} \text{LGD}_{\tau^B}^B E_{\tau^B} \right],$$

$$\text{Funding Valuation Adjustment: } \text{FVA} = \mathbb{E} \left[ \int_0^{\tau^B} D_{0,t} \text{FS}_t^B E_t dt \right],$$

$$\text{Capital Valuation Adjustment: } \text{KVA} = \mathbb{E} \left[ \int_0^T D_{0,t} K_t \text{RWA}_t(E) dt \right],$$

$$\vdots \quad = \quad \vdots$$

## Exposure profiles

- 👎 In general, no access to the distribution of the exposure.
- 👍 In special cases, possible to draw random samples  $(E_t(\omega))_{t \in [0, T]}$ , distributed exactly as  $E$ .
- 👍 In most cases, the best we can do is to draw samples from a distribution, which in some sense, is close to  $E$ .

The distribution of  $E$  is approximated with its empirical counterpart. Common measures are:

Expected exposure:  $EE(t) = \mathbb{E}[E_t],$

Potential future exposure:  $PFE_\alpha(t) = \inf \{a \in \mathbb{R} \mid \mathbb{Q}(E_t \leq a) \geq \alpha\}.$

## Example - European call option under Black–Scholes dynamics

Consider the single European call option, i.e.,  $J = 1$ ,

$$S_t = s_0 e^{(r - \frac{\sigma^2}{2})(T-t) + \sigma W_t}, \quad g(S_T) = \max\{S_T - K, 0\}.$$

Option value, given market state  $(t, S_t)$ :

$$V(t, S_t) = \mathbb{E} \left[ e^{-r(T-t)} g(S_T) \mid S_t \right] = N(d_1) S_t + N(d_2) K e^{-r(T-t)},$$

where  $d_1 = \frac{1}{\sigma \sqrt{T-t}} \left[ \log \frac{S_t}{K} + \left( r + \frac{\sigma^2}{2} \right) (T-t) \right]$  and  $d_2 = d_1 - \sigma \sqrt{T-t}$ .

We can sample exactly from  $E_t^{\text{BS}}$  by

$$\left( E_t^{\text{BS}}(\omega) \right)_{t \in [0, T]} = (\max\{V(t, S_t(\omega)), 0\})_{t \in [0, T]} = (V(t, S_t(\omega)))_{t \in [0, T]}.$$

## How to sample from an approximate distribution?

Approximations are needed e.g., when we have a less idealized asset process than GBM, early exercise features, etc.

Classical methods for sampling from the exposure process:

- Approximate the valuation PDE with e.g., finite elements/differences, and evaluate the solution along stochastic paths of the underlying asset/risk-factor process,
- Approximate conditional expectations with least squares regression,
- Approximate the valuation BSDE pathwise with e.g., monte–carlo based regression,
- Approximate the valuation function with Fourier-based expansion and evaluate the solution along stochastic paths of the underlying asset/risk-factor process.

*Our aim is to introduce a method, capable of approximating the exposure profiles for a portfolio of (potentially) high-dimensional and exotic, derivatives.*

- $J$  derivatives and a risk-factor process,  $X$ , taking on values in  $\mathbb{R}^d$ ,
- Denote by  $\mathcal{T}(t) = \{\mathcal{T}_1(t), \mathcal{T}_2(t), \dots, \mathcal{T}_J(t)\}$  the space of all  $X$ -stopping times vectors taking on values in  $\mathbb{T}(t) = \{\mathbb{T}_1(t), \mathbb{T}_2(t), \dots, \mathbb{T}_J(t)\} \subseteq [0, T]^J$ .

Then, the valuation function of the portfolio is given by

$$\Pi(t, x) = \sup_{\tau \in \mathcal{T}(t)} \sum_{j=1}^J \mathbb{E}_{t,x} [D_{t,\tau_j} g_j(X_{\tau_j})].$$

and the exposures at market state,  $(t, X_t)$ , are given by

$$E_t^{\text{Net}} = \max \left\{ \sum_{j=1}^J V_j(t, X_t) \mathbb{I}_{\{\tau_{0,j}^* > t\}}, 0 \right\}, \quad E_t = \sum_{j=1}^J \max \left\{ V_j(t, X_t) \mathbb{I}_{\{\tau_{0,j}^* > t\}}, 0 \right\},$$

where  $\tau_{0,j}^*$  is the stopping strategy that satisfies the expression above. Note that  $E$  is not a Markov process but  $(E_t, \mathbb{I}_{\{\tau_{0,1}^* > t\}}, \dots, \mathbb{I}_{\{\tau_{0,J}^* > t\}})_{t \in [0, T]}$  is.

## High level picture of algorithm

Divide problem into two sub-problems and solve each sub-problem separately:

**Phase I:** Use neural networks to learn the optimal stopping rule from Monte-Carlo samples of the underlying risk factors.

**Phase II:** Apply the stopping rule from Phase I on Monte-Carlo samples from the underlying risk factors to generate cashflow-paths. Use neural networks to learn the mapping from the underlying risk factors to the exposure/portfolio value by using the cashflows as "labels" (minimize the MSE between our approximation and the cashflow-paths).

## References

**Phase I** is a generalization of the so-called *Deep Optimal Stopping* algorithm (Becker et al. "Deep Optimal Stopping." Journal of Machine Learning Research 20.74 (2019): 1-25.).

Presentation is based on:

K. Andersson, & C. W. Oosterlee. "A deep learning approach for computations of exposure profiles for high-dimensional Bermudan options." arXiv preprint arXiv:2003.01977, (2020).

K. Andersson, & C. W. Oosterlee. "Learning exposure profiles for portfolios of exotic derivatives." working paper, (2020).

# Outline

## 1 Background

## 2 Algorithm

- Phase I - Learning stopping policies
- Phase II - Learning portfolio exposures

## 3 Numerical experiments

- Bermudan options under Black–Scholes dynamics
- Bermudan swaptions under Hull–White dynamics

## Continuation/exercise regions and decision functions

For derivative  $j \in \{1, 2, \dots, J\}$ ,

$$\textbf{Exercise region: } \mathcal{E}_j(t) = \left\{ x \in \mathbb{R}^d \mid V_j(t, x) = g_j(t, x) \text{ and } t \in \mathbb{T}_j(0) \right\},$$

$$\textbf{Continuation region: } \mathcal{C}_j(t) = \left\{ x \in \mathbb{R}^d \mid V_j(t, x) > g_j(t, x) \text{ or } t \notin \mathbb{T}_j(0) \right\},$$

$$\textbf{Optimal decision function: } f_j^*(t, x) = \mathbb{I}_{\{x \in \mathcal{E}_j(t)\}}.$$

We then define the (optimal) decision vector, consisting of  $J$ , (optimal) decision functions

$$\mathbf{f}^*(t, x) = (f_1^*(t, x), f_2^*(t, x), \dots, f_J^*(t, x))^T.$$

## Stopping times in terms of decision functions

Denote the set of exercise dates (the dates where at least one of the derivatives may be exercised) by  $\mathbb{T}^\Pi(t) = \bigcup_{j=1}^J \mathbb{T}_j(t)$  and the number of exercise dates by  $N = |\mathbb{T}^\Pi(0)|$ . We use the simplified notation

$$\mathbb{T}^\Pi(0) = \{T_1, T_2, \dots, T_N\}.$$

The optimal exercise strategy (at portfolio level) is then given by the  $X$ -stopping time

$$\tau[\mathbf{f}^*](X) = \sum_{k=1}^N T_k \mathbf{f}^*(T_k, X_{T_k}) \odot \prod_{m=1}^{k-1} (\mathbf{1}_J - \mathbf{f}^*(T_m, X_{T_m})),$$

or written component-wise

$$\tau_j[f_j^*](X) = (\tau[\mathbf{f}^*](X))_j = \sum_{k=1}^N T_k f_j^*(T_k, X_{T_k}) \prod_{m=1}^{k-1} (1 - f_j^*(T_m, X_{T_m})).$$

## Valuation function in terms of the decision vector

Let  $t \in (T_{n-1}, T_n]$ , and introduce short-hand notation

$$\tau_n^* = \tau[f^*](X^{t,x}), \quad \text{and} \quad \tau_{n,j}^* = (\tau[f^*](X^{t,x}))_j,$$

and the portfolio value can be written as

$$\Pi(t, x) = \sum_{j=1}^J \mathbb{E}_{t,x} \left[ D_{t,\tau_{n,j}^*} g_j(\tau_{n,j}^*, X_{\tau_{n,j}^*}) \right].$$

## Represent decision functions by neural networks and introduce loss function

For  $n \in \{1, 2, \dots, N\}$ , we replace the optimal decision function  $f^*(T_n, \cdot)$  with a neural network  $f_n^{\theta_n} : \mathbb{R}^d \rightarrow \{0, 1\}^J$ .

Want to find set of parameters  $\Theta_1 = \{\theta_1, \theta_2, \dots, \theta_N\}$ , such that

$$(f^*(T_1, \cdot), f^*(T_2, \cdot), \dots, f^*(T_N, \cdot))^T \approx (f_1^{\theta_1}, f_2^{\theta_2}, \dots, f_N^{\theta_N})^T = f_1^{\Theta_1}.$$

Want to find  $\theta_n$ , such the loss function is minimized

$$\begin{aligned} -\mathbb{E}_{T_n} \left[ \sum_{j=1}^J \left( f_n^{\theta_n}(X_{T_n}) \right)_j g_j(T_n, X_{T_n}) \right. \\ \left. + \left( 1 - \left( f_n^{\theta_n}(X_{T_n}) \right)_j \right) D_{T_n, \tau_{n+1,j}^*} g_j \left( \tau_{n+1,j}^*, X_{\tau_{n+1,j}^*} \right) \right]. \end{aligned}$$

Problems:

- ① In general, we have no access to the expected value above.

**Solution:** Approximate with sample mean.

- ②  $f_n^{\theta_n}$  is discontinuous, which makes a gradient decent type algorithm unsuitable.
- ③ We have no access to  $\tau_{n+1}^*$ .

## Loss function

② **Solution:** While optimizing, replace the discontinuous function  $\mathbf{f}_n^{\theta_n}$ , with  $\mathbf{F}_n^{\theta_n}: \mathbb{R}^d \rightarrow (0, 1)^J$ . After optimization, set

$$\mathbf{f}_n^{\theta_n} = \alpha \circ \mathbf{F}_n^{\theta_n},$$

where  $\alpha$  is the component-wise round-off function  $(\alpha(x))_j = \mathbb{I}_{\{x_j \geq \frac{1}{2}\}}$ .

③ **Solution:** If derivative  $j$  has maturity at some  $n \in \{1, 2, \dots, N\}$ , we know that

$$f_{j,n}^{\theta_n}(\cdot) \equiv \mathbb{I}_{\{g_j(T_n, \cdot) > 0\}}, \quad \text{and} \quad f_{j,k}^{\theta_k}(\cdot) \equiv 0, \quad \text{for } k > n.$$

Therefore, at maturity of the portfolio, the optimal decision function is known and we can set  $\mathbf{f}_N^{\theta_N} = \mathbf{f}^*(T_N, \cdot)$ . The optimization can then be carried out, recursively, backwards in time.

## Comments on the structure of the neural networks

- We use 1-3 hidden layers, with 15-30 nodes in each hidden layer,
- We use the (component-wise) ReLU activation function in the hidden layers and the (component-wise) sigmoid function in the output layer to guarantee that all component are mapped to  $(0, 1)$ ,
- The Adam optimizer is used to optimize the trainable parameters,
- More details can be found in references.

# Algorithm

Sample  $M_{\text{train}}$  training samples  $(x_t^{\text{train}}(m))_{t \in [0, T]}$ , distributed as  $X$ . For  $m \in \{1, 2, \dots, M_{\text{train}}\}$ , and  $j \in \{1, 2, \dots, J\}$ , set  $\text{CF}_{N,j}(m) = g_j(T_N, x_{t_N}^{\text{train}}(m))$

For  $n = N - 1, N - 2, \dots, 1$ , do the following:

- ① Find a  $\hat{\theta}_n \in \mathbb{R}^{q_n}$  which approximates

$$\begin{aligned} \hat{\theta}_n^* \in \arg \max_{\theta \in \mathbb{R}^{q_n}} & \left( \frac{1}{M_{\text{train}}} \sum_{m=1}^{M_{\text{train}}} \sum_{j=1}^J \left( \mathbf{F}_n^\theta \left( x_{T_n}^{\text{train}}(m) \right) \right)_j g_j(T_n, x_{T_n}^{\text{train}}(m)) \right. \\ & \left. + \left( 1 - \left( \mathbf{F}_n^\theta \left( x_{T_n}^{\text{train}}(m) \right) \right)_j \right) \text{CF}_{n+1,j}(m) \right). \end{aligned}$$

- ② For all  $j$  and  $m$ , update  $\text{CF}_{n,j}(m)$ :

$$\begin{aligned} \text{CF}_{n,j}(m) = & \left( \mathbf{f}_n^{\hat{\theta}_n} \left( x_{T_n}^{\text{train}}(m) \right) \right)_j g_j(T_n, x_{T_n}^{\text{train}}(m)) \\ & + \left( 1 - \left( \mathbf{f}_n^{\hat{\theta}_n} \left( x_{T_n}^{\text{train}}(m) \right) \right)_j \right) D_{T_n, T_{n+1}} \text{CF}_{n+1,j}(m). \end{aligned}$$

## Portfolio valuation

Sample  $M_{\text{val}}$  valuation samples,  $(x_t^{\text{val}}(m))_{t \in [0, T]}$ , distributed as  $X$ . Denote the vector of optimized decision functions by

$$\mathbf{f}_n^{\hat{\Theta}_n} = \left( \mathbf{f}_n^{\hat{\theta}_n}, \mathbf{f}_{n+1}^{\hat{\theta}_{n+1}}, \dots, \mathbf{f}_{N-1}^{\hat{\theta}_{N-1}} \right),$$

and  $\mathbf{f}^{\hat{\Theta}} = \mathbf{f}_1^{\hat{\Theta}_1}$ . We then obtain for sample  $m$ , i.e.,  $x^{\text{val}}(m)$ , the following stopping rule

$$\tau_{0,j}^{\hat{\Theta}}(m) = \left( \tau \left[ \mathbf{f}^{\hat{\Theta}} \right] \left( x^{\text{val}}(m) \right) \right)_j = \sum_{k=n}^N \mathcal{T}_k \left( \mathbf{f}_k^{\hat{\theta}_k} \left( x_{T_k}^{\text{val}}(m) \right) \right)_j \prod_{\ell=1}^{k-1} \left( 1 - \left( \mathbf{f}_{\ell}^{\hat{\theta}_{\ell}} \left( x_{T_{\ell}}^{\text{val}}(m) \right) \right)_j \right).$$

The estimated portfolio value at  $t = 0$  is then given by

$$\hat{\Pi}(0, x_0) = \frac{1}{M_{\text{val}}} \sum_{m=1}^{M_{\text{val}}} \sum_{j=1}^J \frac{g_j \left( \tau_{0,j}^{\hat{\Theta}}(m), x_{\tau_{0,j}^{\hat{\Theta}}(m)}^{\text{val}}(m) \right)}{B_{\tau_{0,j}^{\hat{\Theta}}(m)}}.$$

# Outline

## 1 Background

## 2 Algorithm

- Phase I - Learning stopping policies
- Phase II - Learning portfolio exposures

## 3 Numerical experiments

- Bermudan options under Black–Scholes dynamics
- Bermudan swaptions under Hull–White dynamics

## Using stopping rule from Phase I

For  $t \in (T_{n-1}, T_n]$  denote the vector-valued discounting process and pay-off function by

$$\mathbf{D}(t, \tau_n^*) = \begin{pmatrix} D(t, \tau_{n,1}^*) \\ \vdots \\ D(t, \tau_{n,J}^*) \end{pmatrix}, \quad \mathbf{g}(\tau_n^*, X^{t,x}) = \begin{pmatrix} g_1(\tau_{n,1}^*, X_{\tau_{n,1}^*}) \\ \vdots \\ g_J(\tau_{n,J}^*, X_{\tau_{n,J}^*}) \end{pmatrix},$$

and the vector-valued process of discounted cashflows by

$$\mathbf{Y}_t = \mathbf{D}_{t, \tau_n^*} \odot \mathbf{g}(\tau_n^*, X_{\tau_n^*}), \quad Y_{t,j} = (Y_t)_j.$$

Furthermore, define the exercise process

$$\mathbb{I}_t = \begin{pmatrix} \mathbb{I}_{\{\tau_{0,1}^* < t\}} \\ \vdots \\ \mathbb{I}_{\{\tau_{0,J}^* < t\}} \end{pmatrix}.$$

Note! Neither  $\mathbf{Y}_t$  nor  $\mathbb{I}_t$  are  $\mathcal{F}_t$ -measurable.

## Regression function

Recall that for  $t, s \in [0, T]$ , with  $t \leq s$  and for  $Z: [0, T] \times \Omega \rightarrow \mathbb{R}^a$ , square integrable, a function  $m$  which satisfies

$$m(t, \cdot) \in \arg \min_{h \in \mathcal{D}(\mathbb{R}^a; \mathbb{R}^b)} \mathbb{E}_t [\|h(X_t) - Z_s\|_2^2],$$

is given by the conditional expectation (assuming  $X$  is a Markov process)

$$m(t, x) = \mathbb{E}_{t,x}[Z_s].$$

## Regression functions in our context

Recall the equations for the exposures

$$E_t^{\text{Net}} = \max \left\{ \sum_{j=1}^J V_j(t, X_t) \mathbb{I}_{\{\tau_{0,j}^* > t\}}, 0 \right\}, \quad E_t = \sum_{j=1}^J \max \left\{ V_j(t, X_t) \mathbb{I}_{\{\tau_{0,j}^* > t\}}, 0 \right\}.$$

For  $t \in (T_{n-1}, T_n]$ , denote  $\mathbf{V}(t, \cdot) = (V_1(t, \cdot), \dots, V_J(t, \cdot))^T$ . The essential parts of  $E^{\text{Net}}$  and  $E$  can be expressed as regression functions

$$\mathbf{V}(t, \cdot) \in \arg \min_{\mathbf{h} \in \mathcal{D}(\mathbb{R}^d; \mathbb{R}^J)} \mathbb{E}_t [\|\mathbf{h}(X_t) - \mathbf{Y}_t\|_2^2],$$

$$\sum_{j=1}^J V_j(t, \cdot) \mathbb{I}_{\{\tau_{0,j}^* > t\}} \in \arg \min_{h \in \mathcal{D}(\mathbb{R}^d \times \{0,1\}^J; \mathbb{R})} \mathbb{E}_t \left[ \left| h(X_t, \mathbb{I}_t) - \sum_{j=1}^J Y_{t,j} \mathbb{I}_{\{\tau_{0,j}^* < t\}} \right|^2 \right].$$

## Approximating the regression functions

Given  $M_{\text{reg}}$  samples,  $(x_t^{\text{reg}})_{t \in [0, T]}$ , distributed as  $X$ , and for  $t \in (T_{n-1}, T_n]$ , we define the empirical regression problems

$$\min_{h \in \mathcal{D}} \left\{ \frac{1}{M_{\text{reg}}} \sum_{m=1}^{M_{\text{reg}}} \|h(x_t(m)) - y_t(m)\|_2^2 \right\}, \quad (1)$$

$$\min_{h \in \mathcal{D}} \left\{ \frac{1}{M_{\text{reg}}} \sum_{m=1}^{M_{\text{reg}}} |h(x_t(m), \mathbb{I}_t(m)) - \sum_{j=1}^J y_{t,j}(m) \mathbb{I}_{\{\tau_{n,j}^*(m) < t\}}|^2 \right\}. \quad (2)$$

The classical way to approximate the regression function is **Least Squares Monte-Carlo** (LSMC) regression. Search for functions in a smaller function class, e.g., polynomials of the components of  $X_t$  up to degree 4, including cross-terms.

- 👍 Closed form solution when  $\mathcal{D}$  is the class of linear combinations of polynomials,
- 👍 Overcomes the curse of dimensionality (but may run into memory issues instead),
- 👎 Not easy to choose appropriate basis functions when function surface to approximate is complicated,
- 👎 Not trivial to approximate a vector valued function in (1) or how to handle  $\mathbb{I}_t(m)$  in (2) (piecewise linear regression?).

## Neural network-based regression

By letting  $\mathcal{D}$  be the class of functions which can be represented by a neural network (with all hyperparameters specified), we can optimize the parameters in the neural network to approximately solve (1) and (2).

- 👍 Possible to specify larger function classes (than for LSMC) without running out of memory,
- 👍 No need to specify clever basis functions, since difficulty rather lies in solving the optimization problem,
- 👎 No closed form solution for optimization problem (black box),
- 👎 More time consuming than LSMC.

**Summary:** In our experience, for  $J = 1$ , with low-dimensional  $X$  and relatively simple pay-off functions LSMC is to prefer. For  $J > 1$ , or/and high-dimensional  $X$ , or/and complicated pay-off functions neural network-based regression seems to be more accurate.

## Neural network-based regression

For  $n \in \{1, 2, \dots, N\}$ , use neural networks of the form

$$\mathbf{h}_n^{\Phi_n}: \mathbb{R}^d \rightarrow \mathbb{R}^J, \quad \text{and} \quad h_n^{\Phi_n}: \mathbb{R}^d \times \{0, 1\}^J \rightarrow \mathbb{R}$$

with empirical loss functions given by

$$\begin{aligned} & \frac{1}{M_{\text{reg}}} \sum_{m=1}^{M_{\text{reg}}} \|\mathbf{h}_n^{\Phi_n^1}(x_t(m)) - y_t(m)\|_2^2, \\ & \frac{1}{M_{\text{reg}}} \sum_{m=1}^{M_{\text{reg}}} |h_n^{\Phi_n^2}(x_t(m), \mathbb{I}_t(m)) - \sum_{j=1}^J y_{t,j}(m) \mathbb{I}_{\{\tau_{0,j}^*(m) < t\}}|^2. \end{aligned}$$

# Outline

## 1 Background

## 2 Algorithm

- Phase I - Learning stopping policies
- Phase II - Learning portfolio exposures

## 3 Numerical experiments

- Bermudan options under Black–Scholes dynamics
- Bermudan swaptions under Hull–White dynamics

## Black-Scholes dynamics

The only risk factor is the  $d$ -dimensional asset process, with component  $i \in \{1, 2, \dots, d\}$  given by

$$(S_t)_i = (s_0)_i \exp \left( (r - q_i - \frac{1}{2} \sigma_i^2) t + \sigma_i (W_t)_i \right),$$

with risk-free rate  $r$ , continuously paying dividend (of asset  $i$ )  $q_i$ , diffusion coefficient  $\sigma_i$ , and  $W$  a  $d$ -dimensional, correlated Brownian motion.

**Max-call-option:**

$$g(s) = (\max \{s_1, s_2, \dots, s_d\} - K)^+.$$

**Arithmetic-average-option:**

$$g(s) = \left( \frac{1}{d} \sum_{i=1}^d s_i - K \right)^+.$$

**Geometric-average-option:**

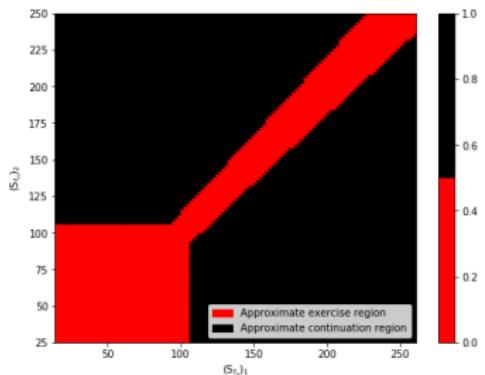
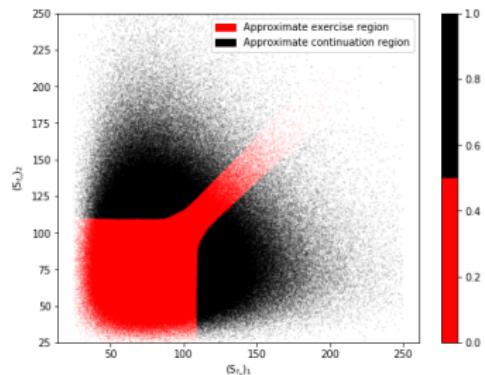
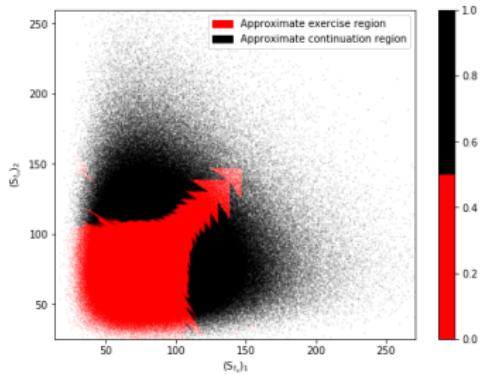
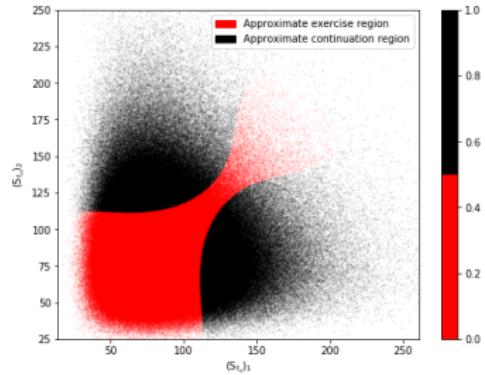
$$g(s) = \left( \left( \prod_{i=1}^d s_i \right)^{\frac{1}{d}} - K \right)^+.$$

## Numerical results

We consider a portfolio of the put and call versions of Bermudan max-options, arithmetic-average-option, and geometric average option with 10 exercise dates.

|             | M-call | M-put | A-call | A-put  | G-call | G-put  |
|-------------|--------|-------|--------|--------|--------|--------|
| <b>Ref</b>  | 13.902 | 9.530 | NA     | NA     | NA     | NA     |
| <b>DOS</b>  | 13.899 | 9.528 | 4.364  | 16.775 | 4.930  | 15.318 |
| <b>SGBM</b> | 13.921 | 9.535 | 4.366  | 16.781 | 4.941  | 15.319 |
| <b>LSMC</b> | 13.851 | 9.520 | 4.363  | 16.778 | 4.927  | 15.309 |

The above results are the average values of 5 independent runs. For LSMC and SGBM each derivative value is computed individually, for DOS all are computed in one run.



**Figure:** Approximate exercise boundaries for a two-dimensional max-call option at  $t_8 \approx 2.67$ .  
**From top left to bottom right:** FEM (American option), DOS, SGBM and LSMC respectively.

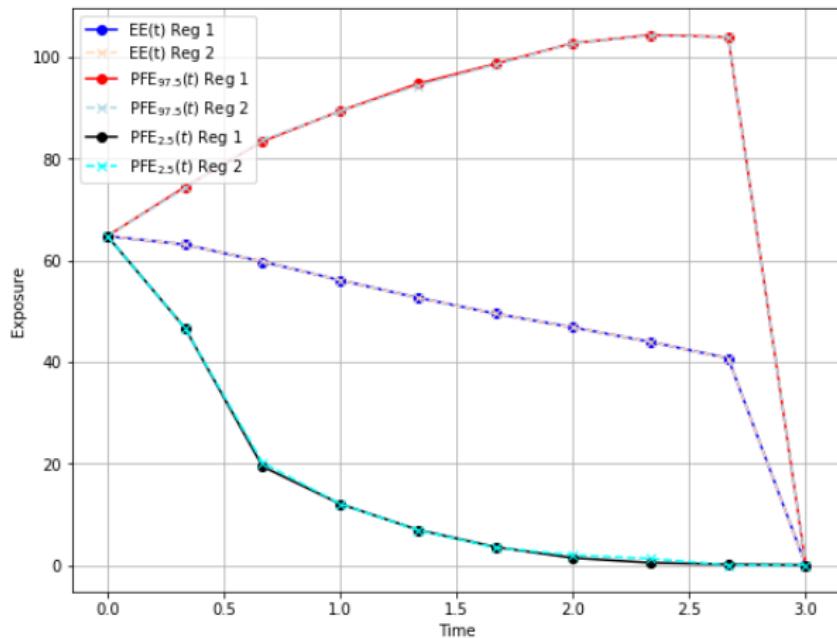


Figure: EE, PFE<sub>97.5</sub>, and PFE<sub>0.25</sub> computed with neural network-based regression with outputs in  $\mathbb{R}$  and  $\mathbb{R}^J$ , respectively.

# Outline

## 1 Background

## 2 Algorithm

- Phase I - Learning stopping policies
- Phase II - Learning portfolio exposures

## 3 Numerical experiments

- Bermudan options under Black–Scholes dynamics
- Bermudan swaptions under Hull–White dynamics

In this example we consider a portfolio of 6 Bermudan interest rate swaptions with partially overlapping exercise dates, and different strike prices.

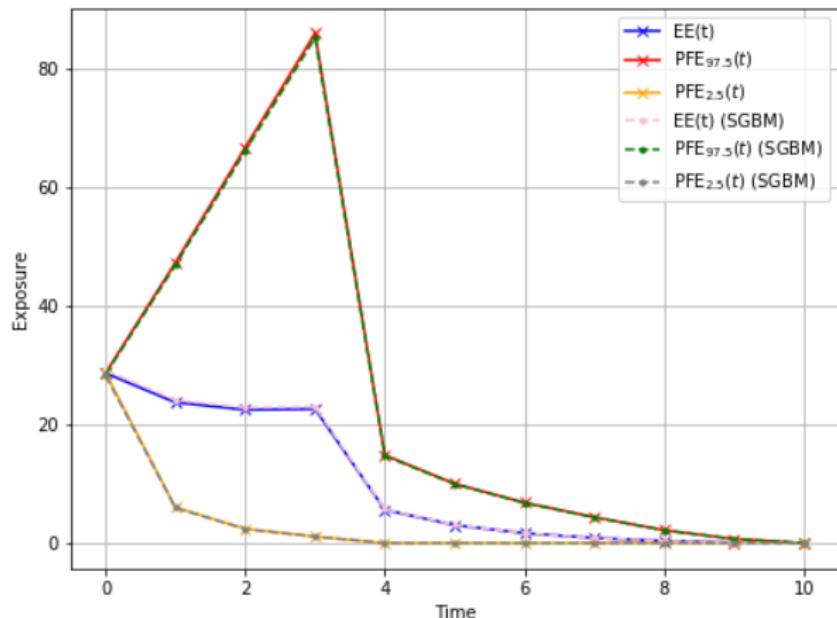


Figure: EE, PFE<sub>97.5</sub>, and PFE<sub>0.25</sub> computed with neural network-based regression and with SGBM (individually for each derivative).