

Industry Problem

Lech A. Grzelak

Department of Financial Engineering at Rabobank
Mathematical Institute at Utrecht University

Lech.Grzelak@Rabobank.com

Overview

- 1 Implied Volatilities and Interpolations
- 2 Model Calibration
- 3 Types of Arbitrage in Volatilities
- 4 Research Questions

Implied Volatilities and Parametrizations

- When handling many market volatility quotes, it is natural to express them in terms of some parametric form so that only a few parameters can explain a whole range of strikes. Moreover, once the parametric equation is given, one can instantly obtain volatilities by evaluating the parametric function.
- A market standard for volatility parameterization for several years, the well-known SABR model-based formula [4] originates from a short-maturity heat kernel expansion.

Implied Volatilities

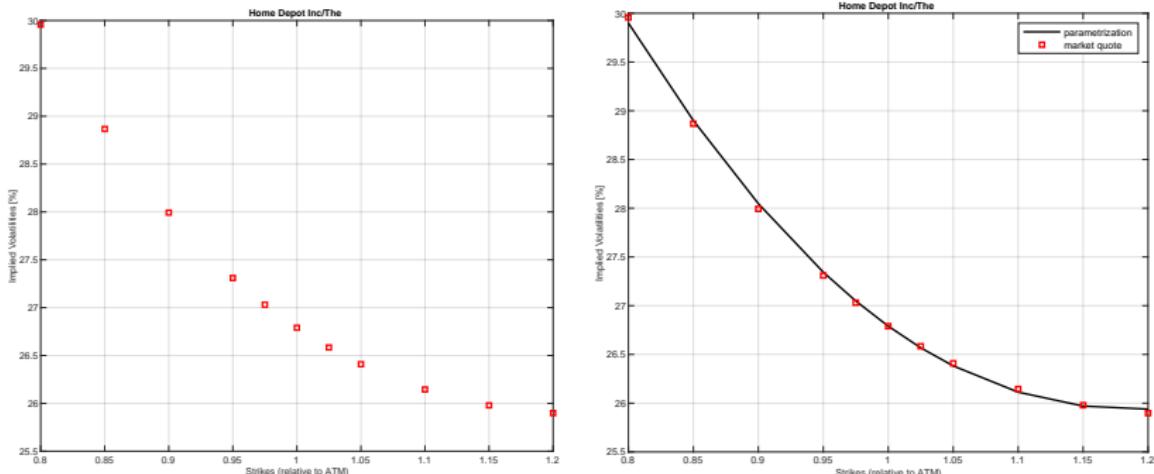


Figure: Left: Market Quotes; Right: Parameterization

The SABR model vs. the Heston model

- The Heston model:

$$\begin{aligned} dS(t) &= \sqrt{v(t)} S(t) dW_1(t), \\ dv(t) &= \kappa(\bar{v} - v(t)) dt + \gamma \sqrt{v(t)} dW_2(t). \end{aligned}$$

- Model → FFT (COS method) → Option Price → Implied Volatilities
- The SABR model:

$$\begin{aligned} dS(t) &= v(t) S^\beta(t) dW_1(t), \\ dv(t) &= \gamma v(t) dW_2(t), \quad v(t_0) = \alpha. \end{aligned}$$

- Model → Implied Volatilities

Volatility Parametrizations

The approximating implied volatility derived in [4] reads:

$$\sigma(T, K) = A(K) \frac{z(K)}{\chi(z(K))} + B(T, K),$$

where

$$\begin{aligned} z(K) &= \frac{\gamma}{\alpha} (S_0 K)^{(1-\beta)/2} \log(S_0/K), \\ \chi(z(K)) &= \log \left(\frac{\sqrt{1 - 2\rho z(K) + z^2(K)} + z(K) - \rho}{1 - \rho} \right), \\ A(K) &= \alpha \left(S_0 K^{(1-\beta)/2} \left(1 + \frac{(1-\beta)^2}{24} \log^2(S_0/K) + \frac{(1-\beta)^4}{1920} \log^4(S_0/K) + \boxed{\epsilon} \right) \right)^{-1}, \\ B(T, K) &= \left\{ 1 + \left(\frac{(1-\beta)^2}{24} \frac{\alpha^2}{(S_0 K)^{1-\beta}} + \frac{1}{4} \frac{\rho \beta \gamma \alpha}{(S_0 K)^{(1-\beta)/2}} + \frac{2-3\rho^2}{24} \gamma^2 \right) \right\} T, \\ \boxed{\epsilon} &= ??? \end{aligned}$$

Can $\boxed{\epsilon}$ be calibrated? By taking, e.g., $\epsilon = a_0 + a_1 S_0/K + a_2 S_0^2/K^2 + \dots$?

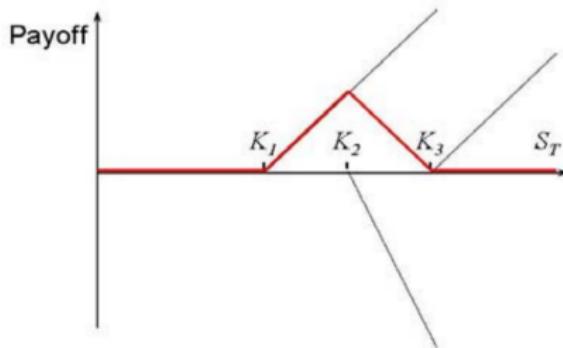
Calibration

- When expressing the implied volatilities in terms of parametrized form, it is crucial to calibrate the parametric form to given market implied volatilities.
- In essence we need to determine the model parameters for which the distance of the model vs. market implied volatilities is the smallest.
- The calibration procedure typically requires many iterations over many possible parameter configurations. This is considered to be an expensive task.
- The calibration of the SABR formula is always performed in two steps:
 - Model parameters are chosen, except for α .
 - α is chosen such that ATM volatilities are perfectly matched.

Types of arbitrage in the volatility objects

We distinguish two types of arbitrage in the volatility objects

- Calendar arbitrage: $C(T_1, K) > C(T_2, K)$, for $T_1 < T_2$ and where C is a call option and K is a strike.
- Butterfly arbitrage $C(T, K_1) - 2C(T, K_2) + C(T, K_3) < 0$ for $K_1 < K_2 < K_3$.



Butterfly Arbitrage

- Without loss of generality we can assume that $K_3 - K_2 = K_2 - K_1 =: \delta_K$ thus since $\delta_K > 0$ we have:

$$\frac{C(K + \delta_K) - 2C(K) + C(K - \delta_K)}{\delta_K^2} \approx \boxed{\frac{\partial^2 C(K)}{\partial K^2}} \quad \text{for } \delta_K \rightarrow 0.$$

- A call price is given by:

$$C(K) = \int_{\mathbb{R}} \max(x - K, 0) f_S(x) dx,$$

so by differentiation we find the following relation:

$$\boxed{\frac{\partial^2 C(K)}{\partial K^2} = f_S(K)}.$$

- So the presence of the butterfly arbitrage is equivalent with assigning negative probabilities to stock's movements.
- The elimination of the butterfly arbitrage is equivalent with ensuring that probability density is nonnegative and it integrates to unit.

Arbitrage in the SABR's formula

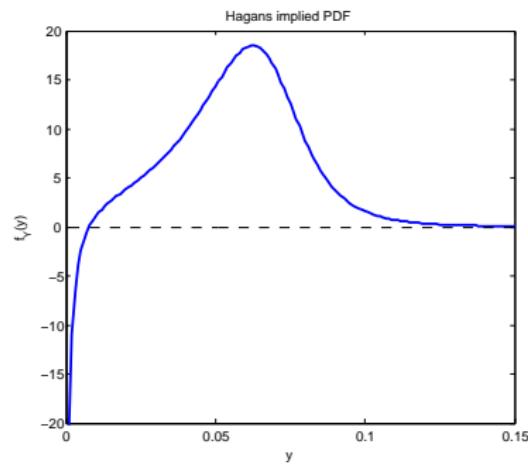
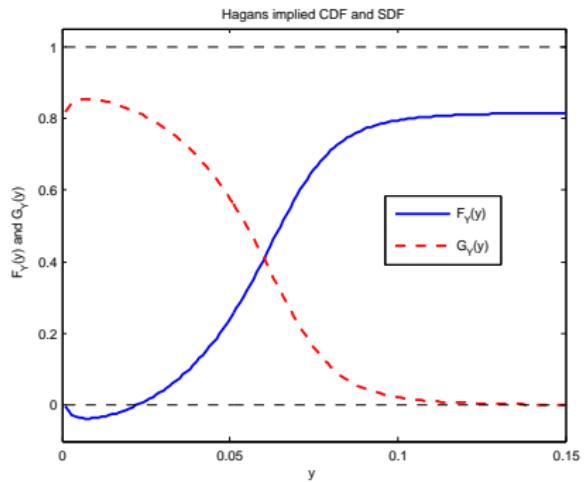


Figure: $\beta = 0.5$, $\alpha = 0.05$, $\rho = -0.7$, $\gamma = 0.4$, $F(t_0) = 0.05$ and $T = 7$. Left: probability density, with deterioration near zero; right: corresponding CDF and SDF (survival distribution function).

Research Questions

The objectives of this project are as follows:

1. Develop a two stage ANN calibration algorithm for the calibration of the SABR model formula.
2. Investigate “fixes”, ϵ , for the formula to mitigate the arbitrage opportunities [1, 5, 3, 2].

Bibliography

- J. Andreasen and B. Huge.
Expanded forward volatility.
Risk, pages 101–107, 2013.
- P. Balland and Q. Tran.
SABR goes normal.
Risk, pages 76–81, 2013.
- P. Doust.
No-arbitrage SABR.
The Journal of Computational Finance, 15(3):3–31, 2012.
- P.S. Hagan, D. Kumar, A.S. Leśniewski, and D.E Woodward.
Managing smile risk.
Wilmott Magazine, pages 84–108, 2002.
- P.S. Hagan, D. Kumar, A.S. Leśniewski, and D.E. Woodward.
Arbitrage-free SABR.