

Efficient Sensitivity Computations for xVA

Felix Wolf¹

Joint work with Griselda Deelstra¹ and Lech Grzelak^{2,3}

¹Department of Mathematics, Université libre de Bruxelles

²Financial Engineering, Rabobank ³Mathematical Institute, Universiteit Utrecht

Sept 29, 2022

Monte Carlo Exposure Simulation

- Let $V(X)$ be an asset (or portfolio) over a risk-factor X_t (e.g. interest rate, stock price, ...) and let $E(t) := \max(0, V_t)$ be its positive exposure.
- The *expected exposure* at time t (as seen today at t_0) is

$$\text{EE}(t_0, t) := \mathbb{E}^{\mathbb{Q}}[D(t_0, t)E(t)|\mathcal{F}_{t_0}].$$

- Standard MC simulation approach: Obtain paths of the underlyings along the time horizon

Interest rate: $\{r_t(\omega_j) : t \in [t_0, T], j = 1, \dots, M\}$,

Underlying: $\{X_t(\omega_j) : t \in [t_0, T], j = 1, \dots, M\}$,

and compute the empirical estimator

$$\text{EE}(t_0, t) \approx \frac{1}{M} \sum_{j=1}^M D(t_0, t; \omega_j) \max(0, V_t(X_t(\omega_j))).$$

Stochastic Collocation Monte Carlo Sampler

- Calculation of expected exposure profile ($\text{EE}(t_0, t)$ for all $t \in [t_0, T]$) is expensive:
(Number of time steps \times number of paths) portfolio valuations!
- Stochastic collocation: Replace expensive portfolio valuation

$$V_t : X_t(\omega) \mapsto V_t(X_t(\omega))$$

by polynomial approximation $g_t \approx V_t$.

- ① Evaluate N exact points: $(x_i, V_t(x_i))$.
- ② Construct polynomial approximation g_t s.t. $g_t(x_i) = V_t(x_i)$.
- ③ $\text{EE}(t_0, t) \approx \frac{1}{M} \sum_{j=1}^M D(t_0, t; \omega_j) \max(0, g_t(X_t(\omega_j)))$.

- Stochastic Collocation Monte Carlo sampler requires only
(Number of time steps \times N) exact portfolio valuations.

L.A. Grzelak, J.A.S. Witteveen, M. Suárez-Taboada, C.W. Oosterlee. The Stochastic Collocation Monte Carlo Sampler. Quantitative Finance, 2019.

L.A. Grzelak. Sparse Grid Method for Highly Efficient Computation of Exposures for xVA. arXiv:2104.14319, 2021.

More general xVA (CVA with wrong-way risk)

Credit valuation adjustment (CVA) with full independence between components is “ $CVA = LGD \times PD \times EE$ ”. With correlations between exposure default (modelled with some stochastic intensity λ):

$$\begin{aligned} CVA(t) &= LGD \mathbb{E}^{\mathbb{Q}} \left[D(t, t_D) \mathbb{1}_{\{t_D \leq T\}} \max(V_{t_D}, 0) \mid \mathcal{F}_t \right] \\ &= LGD \mathbb{E}^{\mathbb{Q}} \left[\int_t^T D(t, s) \max(0, V_s) \mathbb{E}^{\mathbb{Q}} [\mathbb{1}_{\{t_D \in [s, s+ds)\}} \mid \mathcal{F}_T] \mid \mathcal{F}_t \right] \\ &= LGD \int_t^T \mathbb{E}^{\mathbb{Q}} \left[D(t, s) e^{-\int_t^s \lambda_u du} \lambda_s \max(0, V_s) \mid \mathcal{F}_t \right] ds \\ &=: LGD \int_t^T \mathbb{E}^{\mathbb{Q}} \left[G(t, s) \max(0, V_s) \mid \mathcal{F}_t \right] ds. \end{aligned}$$

More general xVA (CVA with wrong-way risk)

$$\text{CVA}(t) = \text{LGD} \int_t^T \mathbb{E}^{\mathbb{Q}} \left[G(t, s) \max(0, V_s) \middle| \mathcal{F}_t \right] ds$$

Simulation approach:

- Simulate paths $\{(r_t(\omega_j), \lambda_t(\omega_j), X_t(\omega_j)) : t \in [t_0, T], j = 1, \dots, M\}$.
- $\mathbb{E}^{\mathbb{Q}}[G(t, s) \max(0, V_s) | F_t] \approx \frac{1}{M} \sum_{j=1}^M G(t, s; \omega_j) g_s(X_s(\omega_j))$.
- $G(t, s; \omega) := \exp(-\int_t^s (r_u(\omega) + \lambda_u(\omega)) du) \lambda_s(\omega)$ does not require portfolio valuations.
- The stochastic collocation Monte Carlo sampler only touches the portfolio valuation; completely flexible for advanced xVA frameworks!

Sensitivities of expected exposures

- ① Obtain yield curve ϕ_0 from market instruments A_1, \dots, A_m .
- ② Obtain shocked yield curve ϕ_i by shocking the market quote K_i of constructing instrument A_i (e.g. swap rate +1bp), $i = 1, \dots, m$.
- ③ Simulate interest rate paths in normal and shocked market:

$$\{r_t(\omega_j) : t \in [t_0, T], j = 1, \dots, M, \text{yield curve} = \phi_0\}$$

$$\{r_t^i(\omega_j) : t \in [t_0, T], j = 1, \dots, M, \text{yield curve} = \phi_i\}$$

- ④ Compute expected exposures

$$\text{EE}(t) \approx \frac{1}{M} \sum_{j=1}^M \exp\left(-\int_{t_0}^t r_s(\omega_j) ds\right) \max(0, V_t(r_t(\omega_j))),$$

$$\text{EE}^i(t) \approx \frac{1}{M} \sum_{j=1}^M \exp\left(-\int_{t_0}^t r_s^i(\omega_j) ds\right) \max(0, V_t^i(r_t^i(\omega_j))).$$

- ⑤ Compute difference quotients $\frac{\text{EE}(t) - \text{EE}^i(t)}{h}$.

Sensitivities of expected exposures with collocation

$$\begin{aligned}\frac{\partial}{\partial K_i} \text{EE}(t_0, t) &= \mathbb{E}^{\mathbb{Q}} \left[\frac{\partial}{\partial K_i} (D(t_0, t) \max(V_t, 0)) \right] \\ &= \mathbb{E}^{\mathbb{Q}} \left[\left(\frac{\partial}{\partial K_i} D(t_0, t) \right) \max(V_t, 0) + D(t_0, t) \frac{\partial \max(V_t, 0)}{\partial K_i} \right] \\ &\approx \sum_{j=1}^M \left(\frac{\partial}{\partial K_i} D(t_0, t; \omega_j) \right) \max(g_t(r_t(\omega_j)), 0) \\ &\quad + D(t_0, t; \omega_j) \frac{\max(g_t^i(r_t^i(\omega_j)), 0) - \max(g_t(r_t(\omega_j)), 0)}{\Delta K}.\end{aligned}$$

Can directly apply stochastic collocation method:

Standard market approximator: $g_t \approx V_t$,

Shocked market approximator: $g_t^i \approx V_t^i$.

$\implies 2N$ exact valuations at each time step (down from $2M$).

Reducing the number of exact valuations

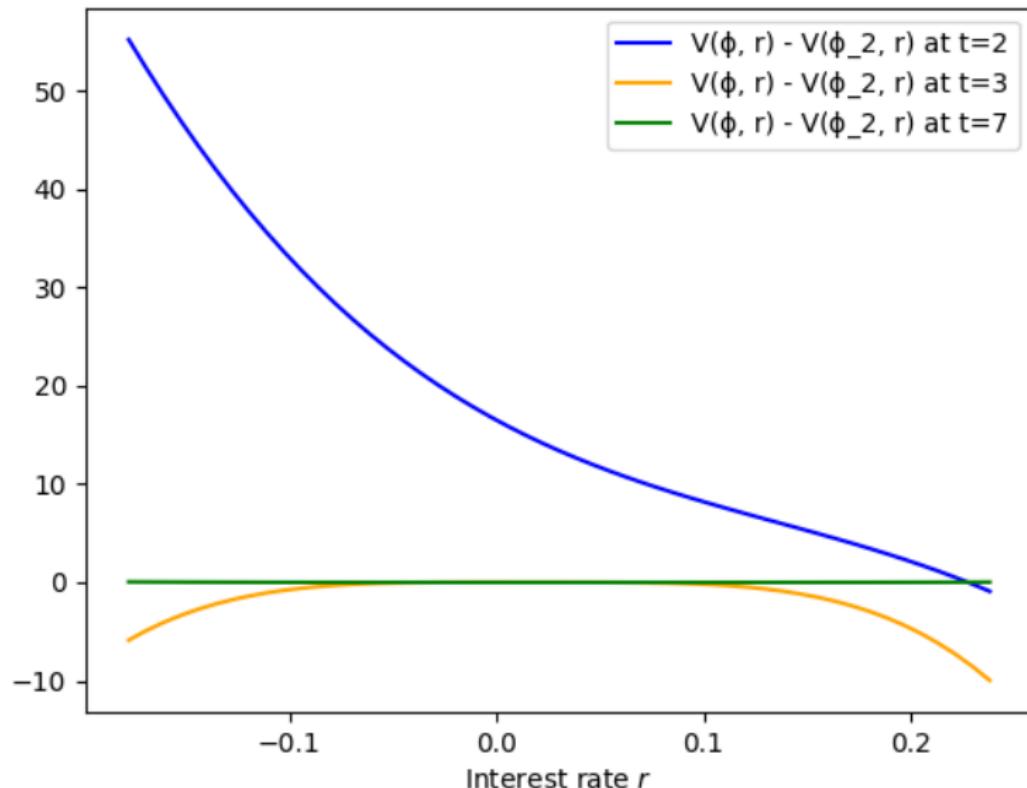
- Practitioners care about a sensitivity profile: $\frac{d\text{EE}(t)}{dK_i}$ for a range of market instruments A_i (used in yield curve construction) with market quotes K_i , $i = 1, \dots, m$.
- Full collocation approach requires $N \cdot (m + 1)$ exact valuations (N for V_t and N more for each V_t^i).

Idea: Difference between V_t^i and V_t may be well approximated by a polynomial of degree $d < N$:

$$h_t^i \approx V_t^i - V_t,$$

reducing the number of additional exact valuations.

Valuation differences between V_t and $V_t^{i=2}$ for $t \in \{2, 3, 7\}$



Efficient sensitivities of expected exposures with collocation

Exact valuation reduction scheme:

- Construct approximator of standard valuation $g_t \approx V_t$ based on data points $(r_k(t), V_t(r_k(t)))$.
- Construct low-degree difference approximation

$$h_t^i \approx V_t^i - g_t$$

$$h_t^i(x) := \sum_{k=1}^d (V_t^i(r_k^i) - g(r_k^i)) \ell_k^i(x)$$

with only d additional exact valuations $V_t^i(r_k^i)$.

- Approximate $V_t^i \approx \tilde{g}_t = g_t + h_t^i$.
- Requires $N + dm$ exact valuations (down from $N + Nm$)

The low-degree difference polynomial

Since V_t^i and g_t^i coincide in r_k^i , we can write

$$\begin{aligned} h_t^i(x) &:= \sum_{k=1}^d (V_t^i(r_k^i) - g(r_k^i)) \ell_k^i(x) \\ &= \sum_{k=1}^d g_t^i(r_k^i) \ell_k^i(x) - \sum_{k=1}^d g(r_k^i) \ell_k^i(x) \\ &=: p_t^i - p_t, \end{aligned}$$

where we have

$$p_t \approx g_t,$$

$$p_t^i \approx g_t^i.$$

Uniqueness of polynomial interpolation guarantees as $d \rightarrow N$:

$$\left. \begin{array}{l} p_t \longrightarrow g_t \\ p_t^i \longrightarrow g_t^i \end{array} \right\} \implies \tilde{g}_t^i \longrightarrow g_t^i.$$

Error analysis

- Assume approximation bounds (on closed interval):

$$\|V_t - g_t\| = \varepsilon(t) \xrightarrow{N \rightarrow \infty} 0,$$

$$\|V_t^i - g_t^i\| = \varepsilon_i(t) \xrightarrow{N \rightarrow \infty} 0.$$

- Easy to obtain bounds for components p_t, p_t^i of h_t^i (target functions g_t, g_t^i are polynomials):

$$\|g_t - p_t\| =: \delta(t) \xrightarrow{d \rightarrow N} 0,$$

$$\|g_t^i - p_t^i\| =: \delta_i(t) \xrightarrow{d \rightarrow N} 0.$$

- Thus the low-degree approximation has an error of

$$\|g_t^i - \tilde{g}_t^i\| \leq \|g_t^i - p_t^i\| + \|g_t - p_t\| = \delta_i(t) + \delta(t)$$

- And we can find an overall approximation error of

$$\|V_t^i - \tilde{g}_t^i\| \leq \|V_t^i - g_t^i\| + \|g_t^i - \tilde{g}_t^i\| \leq \varepsilon_i(t) + \delta_i(t) + \delta(t).$$

Error analysis

Analogously, we can compare the expected exposure sensitivities:

$$\frac{\partial \text{EE}(t_0, t)}{\partial K_i} \approx \mathbb{E}_{t_0} \left[\frac{\partial D(t_0, t)}{\partial K_i} \max(V_t, 0) + D(t_0, t) \frac{V_t^i - V_t}{\Delta K} \right] =: \Psi_{\text{fd}}(t),$$

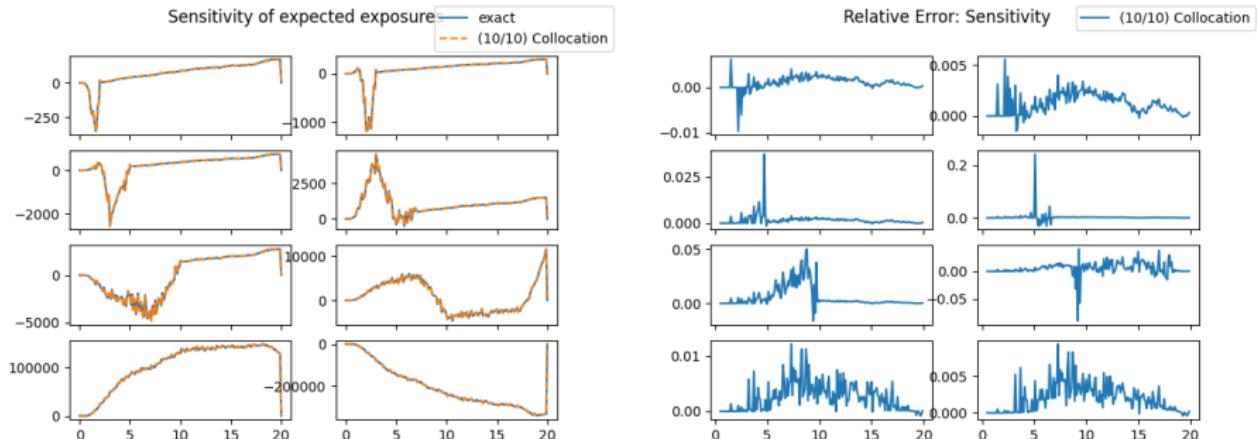
$$\frac{\partial \text{EE}_{\text{coll}}(t_0, t)}{\partial K_i} \approx \mathbb{E}_{t_0} \left[\frac{\partial D(t_0, t)}{\partial K_i} \max(g_t, 0) + D(t_0, t) \frac{\tilde{g}_t^i - g_t}{\Delta K} \right] =: \Psi_{\text{coll}}(t).$$

to obtain

$$\begin{aligned} |\Psi_{\text{fd}}(t) - \Psi_{\text{coll}}(t)| &= \varepsilon(t) \mathbb{E}_{t_0} \left[\left| \frac{\partial \exp(-\int_{t_0}^t r(s) ds)}{\partial K_i} \right| \right] \\ &\quad + \frac{\varepsilon(t) + \varepsilon_i(t) + \delta_i(t) + \delta(t)}{\Delta K_i} P(t_0, t). \end{aligned}$$

Numerical experiment, large swap portfolio

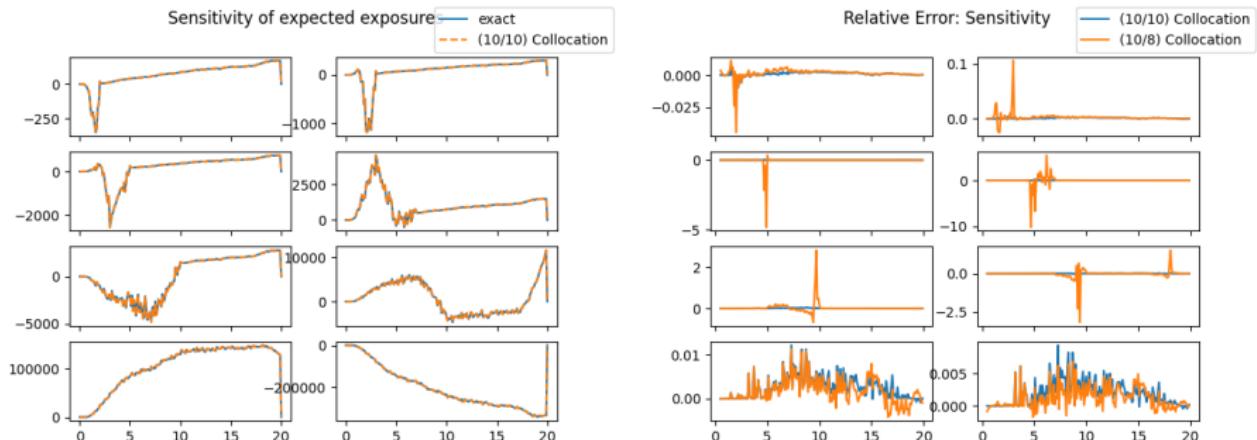
Full collocation: $d = N = 10$



(Row-wise: Sensitivity w.r.t. 1, 2, 3, 5, 7, 10, 20, 30-year instrument on yield curve)

Numerical experiment, large swap portfolio

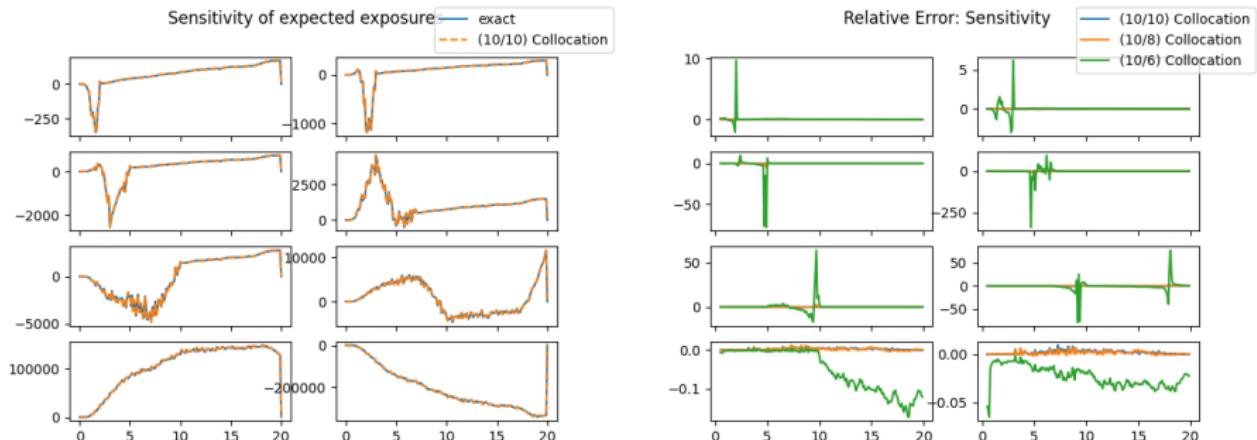
Reduction: $d = 8, N = 10$



(Row-wise: Sensitivity w.r.t. 1, 2, 3, 5, 7, 10, 20, 30-year instrument on yield curve)

Numerical experiment, large swap portfolio

Reduction: $d = 6, N = 10$



(Row-wise: Sensitivity w.r.t. 1, 2, 3, 5, 7, 10, 20, 30-year instrument on yield curve)

Outlook

- We have shown how to drastically reduce the number of exact portfolio valuations in xVA sensitivity.
- Success of the method relies entirely on the choice of interpolation points, particularly the d points for the difference polynomial.
- For convergence proofs we prefer Chebyshev points, in practise we rely on quadrature points.