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Industrial supervisor: Marco Di Francesco3

1 Department of Mathematics, University of A Coruña, 15071 A Coruña, Spain
2 CITIC, 15071 A Coruña, Spain

3 UnipolSai Assicurazioni S.p.A., Bologna, Italy

ABC-EU-XVA project - Closing meeting
Bologna, 29 September 2022

Roberta Simonella ABC-EU-XVA closing meeting, Sept 2022 1 / 27



Table of Contents

Part I: An XVA model in a multi-currency setting

1. General Framework

2. Replicating Portfolio

3. Mathematical Model

4. Expectation-Based Formulation

5. Numerical Results

Part II: A Stochastic ALM model for life insurance companies

1. General Framework

2. Portfolio Rebalancing Strategy

2. Mortality, Surrender and New Production Models

4. Future Cash Flows

5. Numerical Results

Roberta Simonella ABC-EU-XVA closing meeting, Sept 2022 2 / 27



I: An XVA model in a multi-currency setting

An XVA model in a multi-currency setting

1. General Framework

2. Replicating Portfolio

3. Mathematical Model

4. Expectation-Based Formulation

5. Numerical Results

Roberta Simonella ABC-EU-XVA closing meeting, Sept 2022 3 / 27



I: General framework

Framework

Trade between a non-defaultable hedger (H) and a defaultable investor (I)

Multi-ccy framework: domestic ccy D, foreign ccys C0, . . . ,CN

Dynamics under the risk neutral probability measure of the domestic market:

Underlying assets: dS i
t = (r i − qi − ρS

i ,X i
σS i

σX i
)S i

t dt + σS i
S i
t dW

S i

t , i = 1, . . . ,N

FX rates: dX
D,Cj
t = (rD − r j )X

D,Cj
t dt + σX j

X
D,Cj
t dW X j

, j = 0, . . . ,N

I’s credit spread: dht = (µh −Mhσh) dt + σh dW h
t

I’s intensity of default: λ = h
1−R

, where R is the I’s recovery rate

µh −Mhσh = −κλ ⇒ dht =
−κ

1− R
ht dt + σh dW h

t
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I: General framework

Framework

St = (S1
t , . . . , S

N
t ), Xt = (XD,C0

t , . . . ,X
D,CN
t ), X̄t = (XD,C1

t , . . . ,X
D,CN
t )

I’s default state at time t:

Jt =

{
1 in case of default before or at time t

0 otherwise

Derivative value in ccy D at time t:

Risky: Vt = V (t, St ,Xt , ht , Jt)

Risk-free: Wt = W (t, St , X̄t)

Mark-to-market derivative price: M(t, St ,Xt , ht)

In case that I defaults:

V (t, St ,Xt , ht , 1) = RM+(t, St ,Xt , ht) + M−(t, St ,Xt , ht)

Variation of V at default:

∆V = RM+ + M− − V
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I: Replicating portfolio

Building the replicating portfolio

Risk factors

Self-financing portfolio Π that hedges all the risk factors:

market risk due to changes in S1, S2, . . . , SN

⇒ fully collateralized derivatives on the same underlying assets,
net present value H i in ccy Ci , H

i,D = H iXD/Ci in ccy D

FX risk due to changes in XD,C0 , . . . ,XD,CN

⇒ FX derivatives,
net present value E j in ccy D

I’s spread risk due to changes in h and I’s default risk
⇒ two credit default swaps with different maturities written on I:

short term (overnight) credit default swap CDS(t, t + dt)
long term credit default swap CDS(t,T )

Collateral account

Collateral account CC0 composed of a portfolio of bonds RC0 and cash MC0 (ccy C0)

Self-financing condition of a replicating strategy

The hedger matches the spread duration of the uncollateralized part of the derivative by trading

on short term bonds: ΩtB(t, t + dt) = Vt − CC0
t X

D/C0
t
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I: Replicating portfolio

Building the replicating portfolio

Replicating portfolio

Πt =
N∑
i=1

αi
tH

i
t +

N∑
j=0

ηjtE
j
t + γtCDS(t,T ) + εtCDS(t, t + dt) + ΩtB(t, t + dt) + βt

Bank account composition

β = −
N∑
i=1

αiH i,D −
N∑
j=0

ηjE j − γCDS(t,T ) + CC0XD/C0

Variation in the time interval [t, t + dt]:

dβt =−

 N∑
i=1

αi
t(c

D + bD,Cj )H i,D
t +

N∑
j=0

ηjtc
DE j

t + γtc
DCDS(t,T )

 dt

+
[ (

rR + bD,C0

)
RC0
t +

(
cD + bD,C0

)
MC0

t

]
XD/C0dt ,

where rR is the instantaneous repo rate associated to the bond RC0 , bD,C0 is the cross-ccy basis,
and cD is the OIS rate in ccy D.
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I: Mathematical model

Building the pricing PDE

No arbitrage + self-financing condition

V (t, St , ht , Jt ) = Πt ⇒ dVt = dΠt

Pricing PDE for a generic mark-to-market value (∆V = RM+ + M− − V )

∂V

∂t
+ LSXhV = −

h

1− R
∆V + f H,DV + [(rR + bD,C0 − f H,D )RC0 + (cD + bD,C0 − f H,D )MC0 ]XD,C0 ,

LSXh =
1

2

N∑
i,k=1

ρ
Si Sk

σ
Si
σ
Sk S iSk ∂2

∂S i∂Sk
+

1

2

N∑
j,l=0

ρ
Xj X l

σ
Xj
σ
Xl

X jX l ∂2

∂X j∂X l
+

N∑
i=1

N∑
j=0

ρ
Si X j

σ
Si
σ
Xj

S iX j ∂2

∂S i∂X j

+
1

2
(σh)2 ∂

2

∂h2

N∑
i=1

ρ
Si h
σ
Si
σ
hS i ∂2

∂S i∂h
+

N∑
j=0

ρ
Xj h

σ
Xj
σ
hX j ∂2

∂X j∂h

+
N∑
i=1

(r i − qi − ρS
i X i
σ
Si
σ
Xi

)S i ∂

∂S i
+

N∑
j=0

(rD − r j )X j ∂

∂X j
+ (µh − Mh

σ
h)
∂

∂h

Nonlinear (M = V ) and linear (M = W ) pricing PDEs

M = V ⇒
∂V

∂t
+ LSXhV − fV = (r̄RC0 + m̄MC0 )XD,C0 + h(V )+

,

M = W ⇒
∂V

∂t
+ LSXhV −

(
h

1− R
+ f

)
V = (r̄RC0 + m̄MC0 )XD,C0 + h(W )+ −

h

1− R
W
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I: Mathematical model

PDE problems for XVA

XVA value

U = V −W

Final condition

W (T , S , X̄ ) = V (T , S,X , h) = Payoff(S ,X ) ⇒ U(T , S ,X , h) = 0

PDE problems

Nonlinear final value problem (M = V ):{
∂U
∂t

+ LSXhU − fU = h(W + U)+ + (r̄RC0 + m̄MC0 )XD,C0 ,

U(T , S ,X , h) = 0;

Linear final value problem (M = W ): ∂U
∂t

+ LSXhU −
(

h
1−R

+ f
)
U = h(W )+ + (r̄RC0 + m̄MC0 )XD,C0 ,

U(T , S,X , h) = 0.

In both cases, (t, S ,X , h) ∈ [0,T )× (0,+∞)N × (0,+∞)N+1 × (0,+∞).
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I: Expectation-based formulation

Formulation in terms of expectations

In order to compute the values of U by using the Monte Carlo method, we apply the
Feynman-Kac theorem to formulate the PDE problems in terms of expectations.

Nonlinear case (M = V )

U(t, S,X , h) =EQ
t

[
−
∫ T

t
e−f (u−t)

(
hu(W (u,Su , X̄u) + U(u, Su ,Xu , hu))+

+ (r̄RC0
u + m̄MC0

u

)
XD,C0
u

)
du|St = S,Xt = X , ht = h

]

Linear case (M = W )

U(t, S,X , h) =EQ
t

[
−
∫ T

t
e
−
∫ u
t ( hr

1−R
+f )dr

(
hu(W (u,Su , X̄u))+

+ (r̄RC0
u + m̄MC0

u

)
XD,C0
u

)
du|St = S,Xt = X , ht = h

]

Roberta Simonella ABC-EU-XVA closing meeting, Sept 2022 10 / 27



I: Numerical results

Numerical examples

Financial data

r = (0.07, 0.09, 0.12) σS = (0.30, 0.20) q = (0.07, 0.08) rD = 0.06

X0 = (0.13, 0.89, 1.12) σX = (0.38, 0.40, 0.35) R
C0
0 = 25 M

C0
0 = 25

h0 = 0.20 κ = 0.01 σh = 0.2 R = 0.3

cD = 0.06 rR = 0.05 bD,C0 = 0.02 f = 0.06
K 1 = 12 K 2 = 15 K = 5

Payoff

Best of put/put option⇒ G(t, S1
t , S

2
t ,X

D,C1
t ,X

D,C2
t ) = max((K 1 − S1

t X
D,C1
t )+

, (K 2 − S2
t X

D,C2
t )+)
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I: Numerical results

Best of put/put option
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Figure: Risky price and XVA price in the nonlinear case
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I: Numerical results

Best of put/put option

σX XVA price
(0.275,0.05,0.05) [-0.2039,-0.1952]
(0.275,0.05,0.50) [-0.3027,-0.2900]
(0.275,0.50,0.05) [-0.2898,-0.2766]
(0.275,0.50,0.50) [-0.3710,-0.3563]
(0.000,0.00,0.00) [-0.2000,-0.1914]

Table: XVA price confidence intervals in the nonlinear case for different sets of FX rates volatilities values
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II: General framework

Assets and Liabilities Portfolios

Stochastic Asset Liability Management

We build a scenario-based stochastic ALM model with dynamic reinvestment strategy.

Assets Portfolio

Bonds, divided into
buckets of duration

Equity

Cash

Liabilities Portfolio

With-profit life policies:

Single or periodic premiums

Saving account growth rate: max(g , βRP)

Surrender option

New production

Model points: policies are gathered together according to:

minimum guaranteed rate of return;

maturity;

age of policyholder.
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II: Portfolio rebalancing strategy

First Stage of Portfolio Rebalancing Strategy

Nonlinearly constrained optimization problem

Objective function: distance between asset duration and liability duration;

Constraint on portfolio performance: portfolio return is near a benchmark return;

Typical constraints on portfolio composition.

At period k search for an optimal array of asset classes weights αk

Minimize (AD(αk )− LDk )+, αk = (αB1
k , αB2

k , αB3
k , αB4

k , αE
k , α

C
k )

Subject to



βLR I
k+1 ≤ RP

k+1 ≤ β
UR I

k+1, with constant βL, βU∑
i∈Iα α

i
k = 1 (budget constraint)

αi
k ≥ 0, ∀i ∈ Iα (no short selling constraint)∑4
n=1 α

Bn
k ≥ 0.70, αE

k ≤ 0.20 (investement policy constraints)∣∣∣αi
k − α

i
k−1

∣∣∣ ≤ 0.05, ∀i ∈ Iα (turnover constraint)∑
i∈Iα

∣∣∣αi
k − α

i
k−1

∣∣∣ ≤ 0.30 (turnover constraint)
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II: Portfolio rebalancing strategy

Second Stage of portfolio optimization

Sectorial optimization problems

i ∈ {B1,B2,B3,B4,E}
R

i
k : vector of sub-sectors returns at period k for asset class i

Ni : number of sub-sectors for asset class i

U: utility function

At each period k search for the optimal weights vectors ωi
k = (ωi,1

k , . . . , ω
i,Ni
k )

Maximize Ek

max
ω̄i

k+1

Ek+1

max
ω̄i

k+2

Ek+2

. . . max
ω̄i

T−1

ET−1

[
U(ωi

T−1 · R
i
T )
]
. . .





Subject to

Ni∑
j=1

ωi,j
k = αi

k
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II: Portfolio rebalancing strategy

Cash Flows

Macaulay’s Formula

LDk =

∑
j>k

jdj|kcfj|k∑
j>k

dj|kcfj|k

dj|k : price at period k of a zero-coupon bond with tenor j (G1 + + model)

cfj|k : expected cash outflows at period j evaluated at period k

Death payments Dk,i = n
D
k,i · l

D
k,i Premium payments Πk,i = nk−1,i l

Π
k,i

Surrender payments Γk,i = n
S
k,i · l

S
k,i New production payments Pk,i = nPk,i l

P
k,i

Maturity payments Mk,i = n
M
k,i · l

M
k,i

Cash outflows

cfk,i =


Γk,i + Dk,i if tk < Ti ,

Mk,i + Dk,i if tk = Ti ,

0 otherwise

cfk =
∑NM

i=1 cfk,i
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II: Mortality, Surrender, New Production Models

Mortality, Surrender and New Production Models

Mortality Model

Number of policyholders who entered into the contract at time s and die at period k:

sn
D,M
k,i ∼ Bin(sn

M
k−1,i , p

D,M
k,i ),

sn
D,F
k,i ∼ Bin(sn

F
k−1,i , p

D,F
k,i ),

where pD,Mk,i and pD,Fk,i are given by specific life tables, depending only on age.

Surrender Model

Number of policyholders who entered into the contract at time s and surrender at period k:

sn
S
k,i ∼ Bin(snk−1,i , p

S
k,i ).

New Production Model

Number of policyholders who entered into the contract at time k:

nPk,i ∼ Bin(nk−1,i , p
P
k,i ).
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II: Mortality, Surrender, New Production Models

Surrender and New Production Probabilities

For each model point mi , we define

δrSk,i = (R I
k −max(gk,i , βk,iR

P
k ))+ and δrPk,i = (max(gk,i , βk,iR

P
k )− R I

k )+,

where R I
k is a benchmark rate of return at period k.

If δrSk,i is in the threshold interval I q , then the surrender probability at period k is given by

pSk,i = pSqk ;

If δrPk,i is in the threshold interval I q , then the new prod probability at period k is given by

pPk,i = pPqk .

Period
0 1 2 · · · T − 1

In
te

rv
a

ls I 1 pS10, pP10 pS11, pP11 pS12, pP12 · · · pS1T−1, pP1T−1
... · · · · · · · · · · · · · · ·

IQ pSQ0, pPQ0 pSQ1, pPQ1 pSQ2, pPQ2 · · · pSQT−1, pPQT−1
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II: Future Cash Flows

Future Cash Flows

When computing the company balance sheet projections, we consider not only future maturity and
death payments, but also future surrender payments and all the cash flows due to new production.

At each time k, for each model point i and for j > k, we have to compute:

E [max(gj,i , βj,iR
P
j )|Fk ]

E [δrSj,i |Fk ] = E [(R I
j −max(gj,i , βj,iR

P
j ))+|Fk ]

E [δrPj,i |Fk ] = E [(max(gj,i , βj,iR
P
j )− R I

j )+|Fk ]

⇒ Least Squares Monte Carlo method
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II: Numerical results

Numerical Results
Assumptions

All contracts have the same value, say e10 000, in the moment they are signed.

All policies expire at the same future date, say at time T = 10 years.

At time 0 policies are equally distributed between male and female policyholders (gender equality).

Portfolio is rebalanced at each time step (one year).

Policyholders pay a single premium at the beginning of the contract.

The participation rate is the same for all model points and is constant over time (β = 95%).

L0 = 88.7%A0.

Initial scenario

Asset class Weight
B1 bonds, maturity 1-3 21.09%
B2 bonds, maturity 3-5 22.91%
B3 bonds, maturity 5-10 35.79%
B4 bonds, maturity >10 15.38%
E equity 3.74%
C cash 1.09%

Table: Portfolio composition

Minimum guarantee
Age 0% 1% 2%

[40, 44] 50 5 1
[45, 49] 55 5 3
[50, 54] 55 10 3
[55, 59] 60 25 15
[60, 64] 70 80 23
[65, 69] 60 100 50

Table: Number of policies in each model point
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II: Numerical results

Numerical Results
Portfolio Composition Rebalancing
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II: Numerical results

Numerical Results
Number of alive policies
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II: Numerical results

Numerical Results
Participation Rate Sensitivity
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asset-liability management in insurance companies. Journal of Computational Science, 24:232–254, 2018.

Roberta Simonella ABC-EU-XVA closing meeting, Sept 2022 26 / 27



Main references II
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