

Reinforcement learning for portfolio optimization

Kristoffer Andersson

Centrum Wiskunde & Informatica

Bologna,
September 29, 2022

Table of contents

- 1 Motivation
- 2 Proposed reinforcement learning method
- 3 Summary

What are the benefits with the proposed method

Very general asset dynamics, for example:

- Financial time series from real world;
- Data from complex multi-factor scenario generator;
- Any SDE (jumps, transaction costs, different lending and borrowing rates, high dimensional, driven by fBM etc.).

Does not rely on the dynamic programming principle to hold - Very general target function:

- Mean-variance type problems;
- Beyond MV, e.g., only penalize downside risk.

Portfolio optimization from a stochastic control perspective

Wealth dynamics described by a controlled SDE

$$X_t^u = x_0 + \int_0^t b(t, X_t^u, u_t) dt + \int_0^t \sigma(t, X_t^u) dW_t.$$

$X^u = (X_t^u)_{t \in [0, T]}$ state of the system, $u = (u_t)_{t \in [0, T]}$ control of the system, taking on values in \mathbb{R}^d and $U \subset \mathbb{R}^\ell$, respectively.

To measure performance of the control, a **cost functional** is used

$$J^u(t, x) = \mathbb{E}[g(X_T^u) | X_t = x].$$

The **control problem** is to find a control $u \in \mathcal{U}_{[0, T]}$ ($\mathcal{U}_{[0, T]}$:= set of admissible controls) such that the cost functional is minimized.

Assuming the infimum is attainable, we define a **value function** as

$$V(t, x) = \inf_{u \in \mathcal{U}_{[t, T]}} J(t, x; u),$$

and we consider u^* to be optimal if for $t \in [0, T]$

$$J(t, x; u^*) = V(t, x).$$

Dynamic Programming Principle

Recall

$$V(t, x) = J(t, x; u^*) = \mathbb{E}[g(X_T^{u^*}) | X_t^{u^*} = x].$$

Then (under conditions on g) by the law of iterated expectations we have

$$\mathbb{E}[g(X_T^{u^*}) | X_t^{u^*} = x] = \mathbb{E}\left[\mathbb{E}[g(X_T^{u^*}) | X_{t+\Delta t}^{u^*}] | X_t^{u^*} = x\right]$$

and in turn we have (one version of) the **Dynamic programming principle (DPP)**:

$$V(t, x) = \mathbb{E}\left[V(t + \Delta t, S_{t+\Delta t}^{u^*}) | X_t^{u^*} = x\right],$$

for $\Delta t \in [0, T - t]$ ¹.

Question: Why is it important that the DPP holds?

¹From now on skip superscript and denote $X_t = X_t^{u^*}$

Dynamic programming - backward induction

Answer: When the DPP holds, it is possible to start with the terminal wealth of the portfolio and solve for the optimal strategy backwards in time.

Recall

$$V(tx) = \mathbb{E} \left[V(t + \Delta t, X_{t+\Delta t}^{u^*}) \mid X_t^{u^*} = x \right].$$

Therefore, by setting $t = T - \Delta t$ we have

$$V(T - \Delta t, x) = \mathbb{E} [V(T, X_T) \mid X_{T-\Delta t} = x] = \mathbb{E} [g(X_T) \mid X_{T-\Delta t} = x].$$

The problem then boils down to computing conditional expectations which can be done with e.g., regression, Fourier methods, PDE or FBSDE approaches etc..

In summary: When the DPP holds, there are many available methods to solve the problem at hand.

Requirements for the DPP

Question: When does the DPP hold?

The terminal wealth $g(X_T)$ should be linear in the sense of conditional expectations.

DPP holds:

- (logarithmic utility) $g(X_T) = -\ln(X_T)$;
- (exponential utility) $g(X_T) = e^{-aX_T}$.

DPP fails to hold (here we allow g to depend also on the law of X_T):

- (mean-variance) $g(X_T, \mathcal{L}[X_T]) = -\mathbb{E}[X_T] + \lambda \text{Var}[X_T]$;
- (mean-quantile) $g(\mathcal{L}[X_T]) = -\mathbb{E}[X_T] + \text{Quantile}_q(X_T)$;
- Any general function depending on the law of X_T (except a linear combination of expectations).

When the DPP fails to hold almost all existing methods breaks down since backward induction can no longer be used.

Idea based on

- *Deep learning approximation for stochastic control problems* J Han, W E. Advances in Neural Information Processing Systems, Deep Reinforcement learning workshop
- *Convergence of a robust deep FBSDE method for stochastic control*
K Andersson, A Andersson, CW Oosterlee arXiv preprint arXiv:2201.06854

Problem setup

Recall (generalized) the problem

$$\begin{cases} \inf_{u \in \mathcal{U}} g(X_T, \mathcal{L}[X_T]), & \text{subject to} \\ X_T = x_0 + \int_0^T b(t, X_t, u_t) dt + \int_0^T \sigma(t, X_t) dW_t. \end{cases}$$

Three problems to solve, preferably in the following order:

- (1) Approximation of controlled SDE (or any other process);
- (2) Approximation of the law of X_T ;
- (3) Optimize objective function.

Sketch of method

Assuming for now that the asset process is described by an SDE.

- (1) Euler–Maruyama is used to discretize the SDE. Leads to a **discretization error**;
- (2) The law of X_T is approximated by the empirical law of a discrete approximation of X_T . Leads to an **approximation error**.

These two errors can easily be controlled as long as we can prove that the continuous control problem converges to the discrete counterpart (**highly non-trivial**).

Done in the context of FBSDEs without dependency on the law of X_T in: *Convergence*

of a robust deep FBSDE method for stochastic control

K Andersson, A Andersson, CW Oosterlee arXiv preprint arXiv:2201.06854

- (3) Here we would rely on a neural network which would result in a reinforcement learning algorithm of. This would lead to two errors; one optimization error, and one approximation error (approximation capacity of a neural network).

These errors are difficult to treat especially the optimization error. For the approximation error we need rely on the **universal approximation theorem**.

Summary

- Motivate why a method for general portfolio optimization is desirable - Existing methods are very limited in terms of asset dynamics and target;
- Based on experience, good chances that such algorithm would be stable and accurate;
- Numerical analysis could be carried out, very challenging and interesting from a mathematical perspective.

Thanks for your attention!